
A Short Guide for Analyzing OpenMP

Traces with Aftermath

Andi Drebes

This is a short guide for analyzing OpenMP traces with Aftermath.

Copyright c© 2016 Andi Drebes

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 published by the Free Software Foundation; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Analyzing OpenMP Traces . 1
1.1 Status of the OpenMP Support . 1
1.2 Installing Aftermath . 1
1.3 Installing the Aftermath OpenMP Run-time . 2
1.4 Terminology and Concepts . 3

1.4.1 Iteration sets . 3
1.4.2 Iteration periods and task periods . 3

1.5 Analyzing Parallel Loops . 4
1.6 Analyzing Tasks . 9
1.7 Conclusion and Perspectives . 12

GNU Free Documentation License . 13
ADDENDUM: How to use this License for your documents . 19

Chapter 1: Analyzing OpenMP Traces 1

1 Analyzing OpenMP Traces

This short guide provides a quick overview of how to analyze traces generated by OpenMP pro-
grams using our tool for trace-based analysis of parallel programs, called Aftermath. This in-
volves the Aftermath tool itself, for visualizing and analyzing traces, and the Aftermath OpenMP
run-time for generating trace files from OpenMP programs. We first show what a user can ex-
pect from both tools by summarizing the status of the OpenMP support in Aftermath and
Aftermath-OpenMP. After the instructions for the configuration and installation of Aftermath
and Aftermath-OpenMP and a short summary of Aftermath’s terminology for OpenMP, we
present short, self-contained examples for the analysis of OpenMP programs.

1.1 Status of the OpenMP Support

Aftermath has originally been designed for the analysis of dependent tasks in OpenStream. How-
ever, as many of the analyses for OpenStream programs are useful for programs from different
parallel frameworks, in particular OpenMP, Aftermath has recently been extended to support
traces generated by OpenMP programs. Complementary to the OpenMP support in Aftermath,
we provide Aftermath-OpenMP, an instrumented OpenMP run-time library that collects perfor-
mance data at execution time and that generates a trace file at program termination. This freely
available run-time is based on the LLVM/clang OpenMP run-time, which in turn is based on the
Intel OpenMP run-time. OpenMP programs executed with Aftermath-OpenMP and analyzed
with Aftermath may use any construct implemented by the LLVM/clang OpenMP run-time,
but tracing is restricted to the following features:

• Parallel loops can have a static, dynamic or guided schedule and may be chunked (explicitly
or implicitly). The iteration space can be signed or unsigned, but induction variables may
have at most 64 bits. Currently, only single loops are supported, multiple loops combined
with a collapse clause cannot be traced properly.

• The support for tasks is currently limited to independent tasks. Dependent tasks may be
used, but the run-time system does not capture data dependencies and Aftermath can only
display and analyze independent tasks.

• Parallel loops and tasks may be mixed without restrictions. Parallel regions may be nested.

• As Aftermath-OpenMP captures data on a per-core basis, worker threads must be pinned
to cores to avoid that the same worker traces data for multiple cores. In addition, the
number of workers must be less than or equal to the number of available cores to avoid that
two or more workers trace data for the same core.

• The Aftermath-OpenMP run-time requires that programs must be compiled with clang

version 3.8.0 or higher. Any level of optimization by the compiler is allowed, but debugging
symbols must be available in the final executable.

The latter restrictions regarding the mapping of workers to cores, the supported versions of
LLVM/clang and the presence of debugging symbols are automatically verified and enforced by
the aftermath-openmp-trace command distributed with the Aftermath-OpenMP run-time.

1.2 Installing Aftermath

Aftermath is distributed with the git version control system and can be cloned from our public
git repository at git://git.drebesium.org (please make sure to clone the staging branch):

$ git clone git://git.drebesium.org/aftermath.git -b staging

The installation and configuration of Aftermath is done using the GNU Autotools. The
bootstrap script provided by the Aftermath sources invokes the Autotools in the right order
and with the appropriate parameters:

git://git.drebesium.org

Chapter 1: Analyzing OpenMP Traces 2

$ cd aftermath

$./bootstrap

This initial bootstrapping step generates the configure script, which checks for the presence
of software packages required by Aftermath and that configures the source files. This script is
invoked by executing:

$./configure

If all of the required packages are present, configure generates a make file with rules to build
and install the Aftermath. The rules for the compilation and installation are interpreted by the
make utility:

$ make

To speed up compilation on multicore systems, you may use the -j option of make. For example,
if your machine has four processors, you can instruct make to run up to four compilation jobs
simultaneously by running make -j4. The installation step usually requires super user rights
and must be ran directly from a super user shell, e.g., from a shell spawned by the su command,
or indirectly using a program capable of elevating rights, such as sudo:

$ su

make install

or

$ sudo make install

If you do not want to install Aftermath system-wide or if you want to install the program as
a non-privileged user, you can specify an alternate prefix during the configuration by invoking
configure with the --prefix argument. The following sequence of commands installs After-
math into a folder named extra within your home directory:

$./configure --prefix=$HOME/extra

$ make

$ make install

We strongly recommend that you run the unit tests provided by the Aftermath sources. The
check target of the previously generated make file executes these tests automatically:

$ make check

In addition, you may also run the tests with the valgrind utility (if available on your system)
by invoking the valgrind-check target:

$ make valgrind-check

1.3 Installing the Aftermath OpenMP Run-time

In order to generate traces from an OpenMP program, it is necessary to install the instrumented
Aftermath OpenMP run-time. The sources of the run-time are available from another repository
on the same public git server. Start by cloning the repository with git (again, please make sure
that you clone the staging branch):

$ git clone git://git.drebesium.org/aftermath-openmp.git -b staging

Next, configure the run-time using the cmake command. If you have not used any custom
prefix during the configuration of Aftermath, it is sufficient to run cmake without any additional
parameter:

$ cd aftermath-openmp

$ cmake .

Otherwise, you need to indicate where the Aftermath libraries and include files can be found.
This can be done using the CMAKE LIBRARY PATH and CMAKE INCLUDE PATH vari-
ables. You may also indicate a prefix for the installation of the Aftermath OpenMP run-time
through the CMAKE INSTALL PREFIX:PATH variable.

Chapter 1: Analyzing OpenMP Traces 3

$ cd aftermath-openmp

$ cmake -DCMAKE_LIBRARY_PATH=/path/to/aftermath-installation/lib \

-DCMAKE_INCLUDE_PATH=/path/to/aftermath-installation/include \

-DCMAKE_INSTALL_PREFIX:PATH=/where/to/install/the/run-time \

.

Note that there is a dot at the end of the cmake commands. To build and install the run-time,
simply run:

$ make

$ make install

You are now ready to generate traces with the instrumented run-time by using the aftermath-
openmp-trace command. Remember that any program must be compiled with a recent version
of clang (>= 3.8.0) and that debugging symbols must be embedded into the executable using
the -g switch. You may check if the installation is correct by running the tests provided in the
aftermath-tests folder:

$ cd aftermath-tests

$ make all-traces

This generates a series of traces in aftermath-tests/traces that can be opened with After-
math, e.g.:

$ aftermath traces/for-static.ost

1.4 Terminology and Concepts

In the analysis of loops and tasks, we will use the following terms in addition to the terminology
of the OpenMP specification: iteration set, iteration period, and task period. We further refer
to dynamic instances of loops and tasks simply as loops and tasks. These terms are usually asso-
ciated with constructs in the source code, but overloading them allows for a simple terminology
for dynamic analysis and remains unambiguous within the respective context. If a distinction
with constructs and instances is necessary, we use the terms loop construct and task construct.

1.4.1 Iteration sets

We define an iteration set as a (not necessarily contiguous) portion of the iteration space of a
parallel loop. This lets us define the iterations assigned to a worker in a generic way, indepen-
dently from the loop’s schedule and chunking. To illustrate this term, consider the following
example with a single parallel loop, executed by four worker threads:

set_omp_num_threads(4);

#pragma omp parallel for schedule(static, 10)

for(int i = 0; i < 100; i++)

do_something(i);

The static schedule and the chunk size of 10 cause chunks of ten iterations to be assigned to
the four workers in a round-robin fashion. That is, the first worker executes iterations 0–9,
40–49, and 80–89, the second worker executes iterations 10–19, 50–59, 90-99, and so on. The
iteration set defining all iterations executed by the first worker is thus {0, . . . , 9}∪{40, . . . , 49}∪
{80, . . . , 89}. Aftermath displays iteration sets as lists of intervals, e.g., [0, 9], [40, 49], [80, 89].

1.4.2 Iteration periods and task periods

The execution of an iteration set can be interrupted, e.g., if the worker hits a nested barrier within
a parallel loop. This is the case in the following example between the calls to do_something

and do_something_else:
#pragma omp parallel for schedule(static)

for(int i = 0; i < 100; i++) {

do_something(i);

#pragma omp task

Chapter 1: Analyzing OpenMP Traces 4

a_task();

#pragma omp task

another_task();

#pragma omp taskwait

do_something_else(i);

}

We refer to contiguous periods of execution of an iteration set as an iteration period. As
the execution of an iteration set might be interrupted multiple times, multiple iteration periods
might be associated to a single iteration set. In the example above each iteration has two
iteration periods: the first iteration period contains the call to do_something and the creation
of the two tasks and ends at the taskwait barrier, while the second period corresponds to the
code executed after the barrier, with the call to do_something_else.

Note that information about the progress of the execution of an iteration set is generally
not captured by the run-time system. Hence, Aftermath can only determine which iterations
belong to an iteration set, but it cannot determine which iterations have been executed during
a specific iteration period of an iteration set. For example, when executing the code of the
following listing, the run-time does not necessarily capture that the first iteration period of each
iteration set comprises the first three iterations and that the second iteration period is composed
of the last seven iterations:

#pragma omp parallel for schedule(static, 10)

for(int i = 0; i < 100; i++) {

do_something(i);

if(i % 10 == 3) {

#pragma omp task

a_task();

#pragma omp taskwait

}

do_something_else(i);

}

Similar to iteration sets task execution may be interrupted by barriers. We thus define a task
period as a contiguous periods of execution of a task.

1.5 Analyzing Parallel Loops

In the following analyses of OpenMP programs, we consider different implementations of a
program that calculates the amount of prime numbers in an interval using a naive prime test.
We start the analysis with the implementation below, based on a statically scheduled loop:

#include <stdio.h>

#include <math.h>

int isprime_naive(int n)

{

if(n % 2 == 0 && n != 2)

return 0;

for(int j = 3; j <= sqrt(n); j += 2)

if(n % j == 0)

return 0;

Chapter 1: Analyzing OpenMP Traces 5

return 1;

}

int main(int argc, char** argv)

{

int n = 1;

#pragma omp parallel

{

#pragma omp for schedule(static) reduction(+:n)

for(int i = 3; i < 1000000; i += 2)

n += isprime_naive(i);

}

printf("There are %d prime numbers in the interval\n", n);

return 0;

}

Paste the listing above to a file named prime_naive.c or copy the file from the doc/examples
folder of the Aftermath source tree and compile the program using clang version 3.8.0 (or later)
with debugging symbols:

$ clang -fopenmp -g -o prime_naive prime_naive.c -lm

Next, generate a trace file using the aftermath-openmp-trace program from the Aftermath-
OpenMP run-time and open the trace file in Aftermath:

$ aftermath-openmp-trace -o prime_naive.ost -f -- ./prime_naive

$ aftermath prime_naive.ost

After starting Aftermath, you will notice that the time line appears to be empty. This is
because on startup the time line is in so-called state mode, indicating the different run-time and
application states each worker traverses over time. The Aftermath OpenMP run-time traces
states for barriers, critical regions, single and master constructs, but does not associate a state
to parallel loops. The reason for the absence of a loop state is that states only capture very
limited information (an interval), whereas more detailed information is required for the analysis
of parallel loops. Therefore, Aftermath provides specific time line modes for loops, which do
not only provide a quick visual overview of loop executions, but that also let the user select
portions of loop executions to obtain accurate information about loop characteristics. There are
four loop-specific time line modes:

• The loop construct mode assigns a different color to each loop construct and visualizes
iteration intervals with the color associated to their loops’ constructs.

• In loop mode Aftermath assigns a different color to each instance of a loop. That is, if
the same loop construct is executed twice, the intervals associated to each execution are
visualized using a different color.

• The iteration set mode uses a different color for each iteration set. This means that all
iteration periods of the same iteration set are visualized using the same color.

• In iteration period mode the tool associates a different color to each iteration period, such
that the iteration periods of a given iteration set can be distinguished visually on the time
line.

Chapter 1: Analyzing OpenMP Traces 6

Figure 1.1: Selection of the time line mode for the visualization of parallel loops

Figure 1.2: The time line in loop construct mode (left) and iteration set mode (right)

Loop-specific modes can be selected by using the drop down menu next to the OpenMP
button in the tool bar, as shown in Figure 1.1. Figure 1.2 shows the time line in loop construct
mode (left) and iteration set mode (right) for the prime_naive application. As the loop in the
application is executed only once, the trace contains only one loop per loop construct. Hence, the
loop mode yields the same visualization as the loop construct mode and is therefore omitted in
this document. Similarly, the iteration set mode is identical to the iteration period mode, since
the execution of an iteration set is never interrupted, such that there is exactly one iteration
period per iteration set. As all workers are involved in the schedule and as all of them execute
the same loop, the loop construct mode shows the same color for all workers. The iteration set
mode displays a different color for each worker, since each worker is provided with its own part
of the iteration space and thus its own iteration set.

Both visualizations immediately reveal that there is a strong imbalance between workers.
This is the result of an inappropriate use of the static schedule: each worker executes the same
number of iterations, but the amount of work grows with each iteration, leaving the workers
with very different workloads. The partitioning of the iteration space and the amount of work
can be inspected by clicking on an iteration period on the time line.

The contents of the OpenMP loop tab in the detailed text view below the time line for each
worker is shown in Figure 1.3. As expected, the frames for loop constructs and for loops show the
same information for all workers. The loop construct frame states that each worker has executed
the same loop (“For addr: 0x400d60”), with a static schedule (“Schedule: static”) and without
a specified chunk size (“Chunked: No”). The loop frame indicates that the iteration space is
represented by the interval [0, 499998] with an increment of one. This does not reflect the original
specification in the source code, which indicated the interval [3, 999999] with an increment of two.
However, the trace file is generated at execution time and thus after all transformations by the
compiler. Hence, the iteration space and increment shown in Aftermath reflect the transformed
loop characteristics. In addition to this information, the tab also indicates the number of workers
involved in the execution of the loop (“#Workers: 4”), the number of chunks (“#Chunks: 4”),
the number of iteration sets (“#Iteration sets: 4”), the wall clock time from the beginning of the
first iteration period to the end of the last iteration period (“Wall clock time: 481.70 Mcycles”),
the total, aggregated time spent by all workers (“Total time: 1.45 Gcycles”) as well as the chunk
load balance and the parallelism efficiency. The chunk load imbalance is calculated as follows:

Bitset = 1− max{titsettot } − avg{titsettot }
max{titsettot }

Chapter 1: Analyzing OpenMP Traces 7

where max{titsettot } and avg{titsettot } are the maximum and average total durations of the iteration
sets, respectively. A value close to one indicates that there is little difference between those values
and that the partitioning of work leads to iteration sets with similar durations. A value lower
than one indicates an imbalance between iteration sets. The parallelism efficiency is defined as:

Epar =
tlooptot

tloopwct ·Ncpus

with tlooptot being the total, aggregated time spent in the loop by all workers, tloopwct being the wall
clock time from the start of the loop to its end, and Ncpus being the number of cores involved
in the execution. A value close to one indicates that the total amount of work of the loop could
be distributed uniformly among the workers, while a value closer to zero indicates that the loop
needed more time to execute that the total amount of work divided by the number of workers,
indicating a load imbalance. Note that the chunk load balance and the parallelism efficiency can
differ substantially. For example, if a loop contains a barrier, the chunk balance can be high,
while the parallelism efficiency of the loop might be low.

The iteration set frames show different values for each worker: the first worker executes
iterations 0 to 124999, the second worker executes iterations 125000 to 249999, the third worker
executes iterations 250000 to 374999, and the last worker is responsible for iterations 375000 to
499998. As expected, each iteration set is composed of a single iteration period (“#Iteration
periods: 1”). The time for each iteration period varies between 231.05 million cycles and 475.09
million cycles.

Finally, the iteration period frames show the exact timestamps of the beginning and end of
each iteration period. A click on a timestamp centers the time line at the respective position.

Figure 1.3: Detailed information for core 0 to core 3 (top left to bottom right)

Let us now investigate the influence of the schedule of the parallel loop on the load imbalance
between workers, starting with a dynamic schedule. As the loop in the example performs several
hundred thousand iterations, the default chunk size of 1 for dynamic schedules is likely to cause
significant synchronization overhead. To reduce this overhead, we will use a chunk size of 1,000.
To apply the new schedule and chunk size, copy the previous code to a new file named prime_

naive_dynamic.c and replace the pragma above the loop with the following line (or use the file
with the same name in the doc/texi folder of the Aftermath source code):

#pragma omp for schedule(dynamic, 1000) reduction(+:n)

Then, compile the new program, create a new trace file named prime_naive_dynamic.ost and
open the trace with Aftermath:

$ clang -fopenmp -g -o prime_naive_dynamic prime_naive_dynamic.c -lm

$ aftermath-openmp-trace -o prime_naive_dynamic.ost -f -- ./prime_naive_dynamic

$ aftermath prime_naive_dynamic.ost

Figure 1.4 shows the time line for the resulting trace in loop construct mode and iteration set
mode. Both modes show that there is significantly less imbalance between workers. This is the

Chapter 1: Analyzing OpenMP Traces 8

result of the dynamic assignment of many small iteration sets, as illustrated by the numerous
intervals with different colors in iteration set mode. The detailed text view for the dynamic
schedule in Figure 1.5 confirms that the wall clock execution time of the loop could be reduced
to about 389 million cycles. The parallelism efficiency has been increased significantly to almost
100%. The chunking leads to iteration sets with a highly different execution time, which results
in a reduced chunk load balance of less than 10%.

Figure 1.4: The time line in loop construct mode (left) and iteration set mode (right) for the
dynamic schedule

Figure 1.5: Detailed text view for the dynamic schedule

Let us now investigate how the guided schedule behaves. This schedule assigns larger iteration
sets to the workers at the beginning of the execution of the loop and decreases the size towards its
end. This allows the run-time to compensate a load imbalance caused by an increasing amount
of work per iteration, just like the workload of the example. For this last version of the prime
number test, copy the code to another file named prime_naive_guided.c and replace the loop
construct with:

#pragma omp for schedule(guided) reduction(+:n)

or copy the file with the same name from the doc/examples directory. Compile and execute
the program in order to generate a new trace file, prime_naive_guided.ost, and open the
generated trace with Aftermath:

$ clang -fopenmp -g -o prime_naive_guided prime_naive_guided.c -lm

$ aftermath-openmp-trace -o prime_naive_guided.ost -f -- ./prime_naive_guided

$ aftermath prime_naive_guided.ost

Figure 1.6 shows again the time line in loop construct mode and iteration set mode. The work
is now almost perfectly balanced between workers, with a parallel efficiency of 99.995%, shown
in Figure 1.7. The time line in iteration set mode also indicates that the the increasing amount
of work per iteration is in fact overcompensated by the decreasing size of iteration sets, since
the duration for the execution of each set decreases.

Figure 1.6: The time line in loop construct mode (left) and iteration set mode (right) for the
guided schedule

Chapter 1: Analyzing OpenMP Traces 9

Figure 1.7: Detailed text view for the guided schedule

1.6 Analyzing Tasks

For our next example, illustrating the analysis of tasks, consider the code below, representing a
task-based version of the program determining the amount of prime numbers in an interval:

#include <stdio.h>

#include <math.h>

static inline int imax(int a, int b)

{

return (a > b) ? a : b;

}

int isprime_naive(int n)

{

if(n % 2 == 0 && n != 2)

return 0;

for(int j = 3; j <= sqrt(n); j += 2)

if(n % j == 0)

return 0;

return 1;

}

int main(int argc, char** argv)

{

int n = 1;

int slices = 100;

int nloc[slices];

int max = 1000000;

int slice_sz = max / slices;

#pragma omp parallel

{

#pragma omp for schedule(static)

for(int i = 0; i < slices; i++) {

nloc[i] = 0;

#pragma omp task

for(int j = imax(i*slice_sz, 3); j < (i+1)*slice_sz; j++)

nloc[i] += isprime_naive(j);

Chapter 1: Analyzing OpenMP Traces 10

}

#pragma omp taskwait

#pragma omp for schedule(static) reduction(+:n)

for(int i = 0; i < slices; i++)

n += nloc[i];

}

printf("There are %d prime numbers in the interval\n", n);

return 0;

}

The program divides the interval from 0 to 1,000,000 into 100 equal-sized slices and creates a
task for each of the slices in a parallel loop. Each task calculates the amount of prime numbers
in its associated slice and writes the result at the respective position to an array named nloc.
After a barrier waiting for the termination of all generated tasks, a second parallel loop sums
up the results of nloc and writes the final result to n. In a last step, the master thread prints
the result after the end of the parallel region.

Paste the code to a new file named prime_naive_tasks.c or copy the file from
doc/examples, compile it, generate a trace file and load the trace with Aftermath as usual:

$ clang -fopenmp -g -o prime_naive_tasks prime_naive_tasks.c -lm

$ aftermath-openmp-trace -o prime_naive_tasks.ost -f -- ./prime_naive_tasks

$ aftermath prime_naive_tasks.ost

Figure 1.8 shows the time line in task construct mode and task mode. The first observation
on the time line in task mode is that task execution covers almost the entire duration of the
program. Only a small part towards the end of the execution is not spent on task execution
for some of the workers. As there is only one task construct, only one color is used. The many
different colors in task mode on the right side of the figure represent the task instances.1

Figure 1.8: The time line in task construct mode (left) and task mode (right) for the imple-
mentation with tasks

Each task can be inspected with a click on the associated task period on the time line.
Figure 1.9 shows the detailed text view for one of the tasks. Similar to the detailed text view for
parallel loops, the view is split into three parts, providing information about the task construct,
the task and the selected task period. The task construct frame confirms that there are exactly
100 instances of the task (“#Instances: 100”). As the tasks do not contain barriers and thus
cannot be interrupted, there is only one task period per task, as shown in the task frame (“#Task
periods: 1”). The executing core, the start and end timestamp as well as the exact duration of
the task period are given in the rightmost frame.

1 Although there are a hundred tasks present in the trace, less than a hundred colors are used in the figure.
This is because the number of distinct colors in Aftermath is limited, causing the tool to use the same color
for different tasks. If necessary, the color of each task construct, task or task period can be changed manually.

Chapter 1: Analyzing OpenMP Traces 11

Figure 1.9: Detailed text view for the implementation with tasks

Figure 1.10 shows the time line in state mode for the entire execution of the program (left) and
zoomed on the end of the execution (right). The mapping between colors and states are given
in a table at the bottom of the statistics tab. The table for the example, given in Figure 1.11,
shows five states:

• barrier (light blue), indicating time spent in an implicit barrier of a parallel loop or in
explicit barriers.

• critical (dark blue), single (white), and master (pink), associated to time spent in a critical
region, in a single construct, and in a master construct, respectively.

• taskwait (red), representing time spent on synchronization with tasks, either at the end of
a task or in a taskwait barrier.

The time line shows short red intervals associated to task synchronization throughout the
entire execution (at the end of each task) and longer red intervals for the taskwait barrier
towards the end of the execution of the program. The intervals at the end of the execution
are complementary to the slight imbalance between workers in the task mode in Figure 1.8,
shown earlier. A zoom in this part, shown on the right side of Figure Figure 1.10, also indicates
that some time was spent in the implicit barrier at the end of the second parallel loop. Exact
statistics on how much time was spent in the different states can be obtained by clicking on
the button labeled Select from graph in the statistics panel and by selecting an interval from
the time line. The table showing the mapping between colors and states is then immediately
updated with two values per state. The first value indicates the fraction of the selected interval
that was spent in each state, while the second value indicates how many workers on average
were in this state simultaneously. The values in Figure 1.11 are very low: only about 1.5% and
0.01% of the time were spent on task synchronization and barriers, respectively. The rest of the
time was spent on the execution of tasks and loops.

Figure 1.10: The time line in state mode (left: entire execution of the program; right: zoom
on the end)

Figure 1.11: Statistics about the time spent in the different states

Chapter 1: Analyzing OpenMP Traces 12

1.7 Conclusion and Perspectives

In this short guide, we showed how to install Aftermath and Aftermath-OpenMP and provided
a few scenarios for the Analysis of parallel loops and tasks. We investigated the influence of
the loop schedule and the use of tasks on a synthetic program, calculating the amount of prime
numbers in the interval from 0 to 1,000,000. We showed how to inspect the partitioning of the
iteration space of loops and how to locate imbalances between workers. We also pointed out
how to quantify the time spent in different run-time states, in particular barriers for loops and
tasks.

Aftermath constantly evolves and more advanced techniques for the analysis of OpenMP
programs will be integrated. Aftermath and Aftermath-OpenMP are released under free software
licenses. Your bug reports, suggestions for improvements and code contributions are welcome.
To find out more on how to contribute and to stay informed, please visit our website at http://
www.openstream.info/aftermath.

http://www.openstream.info/aftermath
http://www.openstream.info/aftermath

GNU Free Documentation License 13

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

http://fsf.org/

GNU Free Documentation License 14

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

GNU Free Documentation License 15

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

GNU Free Documentation License 16

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

GNU Free Documentation License 17

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

GNU Free Documentation License 18

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http://
www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

GNU Free Documentation License 19

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

	Analyzing OpenMP Traces
	Status of the OpenMP Support
	Installing Aftermath
	Installing the Aftermath OpenMP Run-time
	Terminology and Concepts
	Iteration sets
	Iteration periods and task periods

	Analyzing Parallel Loops
	Analyzing Tasks
	Conclusion and Perspectives

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

