
Cross-Layer Performance Analysis of Parallel Programs with Aftermath
Tutorial at HiPEAC 2017

Virtual Machine Image
The virtual machine image based on Debian GNU/Linux includes the source code and a fully working
installation of Aftermath, Aftermath-OpenMP, libaftermath-trace and OpenStream. The image is using
the Open Virtualization Format, compatible with all major virtualization solutions. Once you have
imported the VM image and started it, you can log in to the system by using the following user name
and password:
User name: openstream Password: openstream

Analysis of OpenMP programs
1. Open a terminal, go to /home/openstream/example-traces/openmp/shortguide and open the

trace file prime_naive.ost:
$ cd /home/openstream/example-traces/openmp/shortguide
$ aftermath prime_naive.ost

(a) How much time was spent in total waiting on barriers?
(b) Set the time line mode to loop constructs using the tool bar button labeled OMP at the top.
(c) How were the iterations distributed across the workers?
(d) How much time did it take for each worker to complete the computation?

2. Open the file prime_naive.c in a text editor (emacs, vi or gedit are pre-installed in the VM) and
change schedule(static) to schedule(dynamic)).

(a) Recompile the executable with the clang compiler. This can be done by executing:
$ clang -g -o prime_naive prime_naive.c -lm -fopenmp

(b) Generate a new trace file named prime_naive_dynamic.ost using aftermath-openmp-trace:
$ aftermath-openmp-trace -o prime_naive_dynamic.ost -f -- ./prime_naive

(c) Open the generated trace file with Aftermath. Could the time spent in barriers be reduced?
What about the total time of the computation?

3. Change the schedule back to static and specify a chunk size of 1000 by changing schedule(dynamic)
to schedule(static, 1000). Recompile the program with clang and generate a new trace file
called prime_naive_chunked.ost. Could the total time of the computation be reduced?

4. Go to /home/openstream/example-traces/openmp/mg and open the trace file mg.C.ost.

(a) How many parallel loop constructs are there?
(b) Make all cores visible by clicking on the first button in the tool bar at the top and set the

time line to loop construct mode. Choose a loop with a strong imbalance and compare the
number of iterations in the iteration set of one of the fastest workers with one of the slowest
workers. Assuming a constant amount of work per iteration, does the number of iterations
justify the imbalance?

(c) What is the duration of the main computation phase? How much time was spent on barriers?
Compare with mg-numa.C.ost and mg-numa.C-128-threads.ost.

1

Analysis of task-parallel OpenStream programs
1. Go to /home/openstream/example-traces/openstream/seidel/ and open the trace rnd.ost.bz2

as well as the executable rnd-stream_df_seidel with Aftermath by running:

$ aftermath rnd.ost.bz2 rnd-stream_df_seidel

Select Color Schemes from the Edit menu, click on Open in the popup dialog and select the
file /home/openstream/example-traces/openstream/seidel/seidel-colorscheme.acs. Next,
select the entry Stream_df_seidel from the list of color schemes and click on the Apply button. This
color scheme associates yellow with initialization tasks (writing input data to streams), green with
main computation tasks and red with termination tasks (writing output data to global memory).

(a) Activate the task type map by clicking on the symbol with a capital T from the tool bar.
Which phases of the benchmark can be identified? Is there any overlap between the phases?

(b) Click on the button labeled Select from graph at the bottom of the right panel and select the
entire execution interval from the time line. What is the average task duration?

(c) For the next steps, we are only interested in main computation tasks. Deselect all tasks on
the left panel by clicking on the button labeled Select none below the list of task types. Now
select all tasks whose symbol starts with create_next_iteration_task and click on the Apply
button below the list. What does the histogram with distribution of the task duration look
like?

(d) Click anywhere on an interval rendered in green on the time line to select a main computation
task. Zoom in until the dashed red rectangle indicating the selected task becomes visible.
How much data was read and written by the task? Which NUMA nodes were accessed?

(e) Click on the button with the yellow circles at the very right of the toolbar. This tells Aftermath
to analyze all dependences and to highlight the producers of the selected task and their
producers on the time line. On which cores were the producers executed?

(f) Zoom out and activate the NUMA heat map by clicking on the blue and purple button between
the button with a W and the type map button. Given that blue indicates a high fraction of
local memory accesses and purple indicates a high fraction of remote memory accesses, how
would you characterize this execution?

(g) What does the NUMA communication incidence matrix in the right panel look like? How
much data was accessed locally? How much data was accessed remotely?

2. Open opt.ost.bz2 and opt-stream_df_seidel, load and apply the same color scheme as above.
Make the entire execution and all cores visible by clicking on the first two buttons in the tool bar.

(a) Activate the NUMA read map by clicking on the tool bar button with a capital R. This
view associates a color with each NUMA node, determines the NUMA node with the highest
amount of read accesses for each pixel’s interval and renders the pixel in the appropriate color.
What does the appearing pattern look like?

(b) Activate the NUMA write map by clicking on the tool bar button with a capital W. Is the
pattern similar to the pattern shown by the NUMA read map?

(c) When comparing the NUMA read and write maps there is a large “gap” in the read map at
the beginning. Why?

(d) Select the entire execution and have a look at the NUMA communication incidence matrix.
How would you characterize this execution?

3. Go to /home/openstream/openstream/examples, create a copy of the skeleton folder named
prodcons and change to that directory. Next, compile the program by invoking make and run it:
$ cd /home/openstream/openstream/examples
$ cp -r skeleton prodcons
$ cd prodcons
$ make
$./skeleton

2

(a) Open the file skeleton.c with a text editor. What does this program do?
(b) Modify the program such that the first task produces an integer that is consumed by the

second task. To this end, modify the main function as in the following listing:
int main(int argc, char** argv)
{

int s __attribute__((stream));

#pragma omp task output(s)
{

s = 1234;
printf("Producer writes %d\n", s);

}

#pragma omp task input(s)
{

printf("Consumer reads %d\n", s);
}

#pragma omp taskwait
return 0;

}

Recompile and execute the program.
(c) Change the program, such that multiple data elements are exchanged between the producer

and consumer:
int main(int argc, char** argv)
{

int s __attribute__((stream));
int view[5];

#pragma omp task output(s << view[5])
{

for(int i = 0; i < 5; i++) {
view[i] = i*i;
printf("Producer writes %d\n", view[i]);

}
}

#pragma omp task input(s >> view[5])
{

for(int i = 0; i < 5; i++) {
printf("Consumer reads %d\n", view[i]);

}

#pragma omp taskwait
return 0;

}

Recompile and execute the program. The run-time has been configured to generate a trace
file named events.ost at each execution of an OpenStream program. Open the trace file
from the last execution, locate the producer and the consumer task and verify how much data
was exchanged between them.

(d) Modify the last program, such that it generates 100 pairs of producers and consumers. Execute
the program and open the trace file. Activate rendering of work-stealing events by clicking on
the tool bar button with the orange dots and lines. On the time line, each work-stealing event

3

is now rendered with a dot on the worker from whom the task was stolen and a line ending
at the worker that stole the task. Is there a pattern for work-stealing events in this program?

(e) Set the communication incidence matrix to CPU mode by clicking on the CPUs radio button
below the matrix. Uncheck the two check boxes labeled R and W and check the S box in
order to visualize work-stealing events. To count the number of events, also check the box
labeled # events only. Are there any work-stealing events for which the worker on core 0 is
not the victim?

Tool bar buttons

Draw annotations Draw performance counters

Draw measurement intervals Draw states

A
L
L Show all cores

ALL
Limit view to measurement interval

OpenMP

OMPOMP Activate OpenMP mode (select specific mode from drop down menu)

OpenStream
Draw task creation / destruction / ex-
ecution events

Indicate producers of the selected task
on the time line

Draw work-pushing events Draw read accesses to streams

Draw write accesses to streams N Indicate the size of stream accesses

Draw work-stealing events Activate heat map mode

R Activate NUMA read map mode W Activate NUMA write map mode

Activate NUMA heat map mode T Activate task type mode

References
All papers, documentation and the virtual machine image can be found online at the main website
https://www.aftermath-tracing.com/

[1] Andi Drebes, Jean-Baptiste Bréjon, Antoniu Pop, Karine Heydemann, and Albert Cohen. Language-
Centric Performance Analysis of OpenMP Programs with Aftermath. In IWOMP ’16, 2016.

[2] Andi Drebes, Antoniu Pop, Karine Heydemann, and Albert Cohen. Interactive Visualization of
Cross-Layer Performance Anomalies in Dynamic Task-Parallel Applications and Systems. In ISPASS
’16, April 2016.

[3] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and Nathalie Drach-Temam. Af-
termath: A Graphical Tool for Performance Analysis and Debugging of Fine-Grained Task-Parallel
Programs and Run-time Systems. In MULTIPROG ’14, 2014.

4

https://www.aftermath-tracing.com/

