
Aftermath:
Interactive Visualization of Cross-Layer Performance Anomalies in

Dynamic Task-Parallel Applications and Systems

Andi Drebes

The University of Manchester
School of Computer Science

Advanced Processor Technologies
andi.drebes@manchester.ac.uk

Joint work with:
Antoniu Pop, Karine Heydemann, Albert Cohen

ISPASS 2016



Task-Parallel Programming
Application

Run-time

OS

Hardware

Principles of task-parallel programming
I Small units of work (tasks)
I Inter-task data dependences
I Expose large amounts of parallelism
I Efficient execution by a run-time system
I OpenMP 4, StarSs, OpenStream, . . .

Andi Drebes – Performance Analysis of Task-Parallel Applications 1 / 9



Performance of Task-Parallel Programs

Application Hardware

Run-time

Performance analysis difficult
I Every component complex in itself
I Lots of complex interactions
I Performane anomalies? Which component(s)?
I Relation to execution model: Task-centric analysis

Aftermath: Make things easier with the right tool

Andi Drebes – Performance Analysis of Task-Parallel Applications 2 / 9



Performance of Task-Parallel Programs

Application Hardware

Run-time

Partitioning

Synchronization

2

3

1

Granularity

Performance analysis difficult
I Every component complex in itself
I Lots of complex interactions
I Performane anomalies? Which component(s)?
I Relation to execution model: Task-centric analysis

Aftermath: Make things easier with the right tool

Andi Drebes – Performance Analysis of Task-Parallel Applications 2 / 9



Performance of Task-Parallel Programs

Software stackScheduling

31

Memory Allocation

Application Hardware

Run-time

Partitioning

Synchronization

2

3

1

Granularity

Performance analysis difficult
I Every component complex in itself
I Lots of complex interactions
I Performane anomalies? Which component(s)?
I Relation to execution model: Task-centric analysis

Aftermath: Make things easier with the right tool

Andi Drebes – Performance Analysis of Task-Parallel Applications 2 / 9



Performance of Task-Parallel Programs

Software stackScheduling

31

Memory Allocation

Application Hardware

Run-time

Partitioning

Manycore NUMA

Micro-architecture

Synchronization

2

3

1

Caches

L1D L1I

L2

L3

Granularity

Performance analysis difficult
I Every component complex in itself
I Lots of complex interactions
I Performane anomalies? Which component(s)?
I Relation to execution model: Task-centric analysis

Aftermath: Make things easier with the right tool

Andi Drebes – Performance Analysis of Task-Parallel Applications 2 / 9



Performance of Task-Parallel Programs

Software stackScheduling

31

Memory Allocation

Application Hardware

Run-time

Partitioning

Manycore NUMA

Micro-architecture

Synchronization

2

3

1

Caches

L1D L1I

L2

L3

Granularity

Performance analysis difficult
I Every component complex in itself
I Lots of complex interactions
I Performane anomalies? Which component(s)?
I Relation to execution model: Task-centric analysis

Aftermath: Make things easier with the right tool

Andi Drebes – Performance Analysis of Task-Parallel Applications 2 / 9



Performance of Task-Parallel Programs

Software stackScheduling

31

Memory Allocation

Application Hardware

Run-time

Partitioning

Manycore NUMA

Micro-architecture

Synchronization

2

3

1

Caches

L1D L1I

L2

L3

Granularity

Performance analysis difficult
I Every component complex in itself
I Lots of complex interactions
I Performane anomalies? Which component(s)?
I Relation to execution model: Task-centric analysis

Aftermath: Make things easier with the right tool
Andi Drebes – Performance Analysis of Task-Parallel Applications 2 / 9



Outline

Trace-based Analysis

Overview of Aftermath

Demo

Conclusion



Trace-Based Analysis

Application

Instrumented run-time
• Task creation
• Inter-task comm.
• Synchronization
• ...

Hardware
• Stall cycles
• Cache misses
• Local / remote mem. acc.
• ...

Trace file

Offline
analysis

Trace data
I Captured during execution
I Run-time / hardware / application

events
I Event types

I Discrete events
I State changes
I Counter values

I Dump to trace file for post-mortem
analysis

Andi Drebes – Performance Analysis of Task-Parallel Applications 3 / 9



Aftermath: Why a new Tool?

Andi Drebes – Performance Analysis of Task-Parallel Applications 4 / 9



Aftermath: Why a new Tool?

Support for
Dependent Tasks

Andi Drebes – Performance Analysis of Task-Parallel Applications 4 / 9



Aftermath: Why a new Tool?

Support for
Dependent Tasks

Data-flow
Analysis

10010110

11000110

1001011001001 10
01

01
10

Andi Drebes – Performance Analysis of Task-Parallel Applications 4 / 9



Aftermath: Why a new Tool?

Support for
Dependent Tasks

Cross-Layer
Analysis

App HW

RT

Data-flow
Analysis

10010110

11000110

1001011001001 10
01

01
10

Andi Drebes – Performance Analysis of Task-Parallel Applications 4 / 9



Aftermath: Why a new Tool?

Support for
Dependent Tasks

Cross-Layer
Analysis

App HW

RT

Support for
NUMA

Data-flow
Analysis

10010110

11000110

1001011001001 10
01

01
10

Andi Drebes – Performance Analysis of Task-Parallel Applications 4 / 9



Aftermath: Why a new Tool?

Support for
Dependent Tasks

Cross-Layer
Analysis

App HW

RT

Support for
NUMA

Powerful
Filters

Data-flow
Analysis

10010110

11000110

1001011001001 10
01

01
10

Andi Drebes – Performance Analysis of Task-Parallel Applications 4 / 9



Aftermath: Why a new Tool?

Support for
Dependent Tasks

Cross-Layer
Analysis

App HW

RT

Support for
NUMA

Powerful
Filters

Reactive UI
for large Files

Data-flow
Analysis

10010110

11000110

1001011001001 10
01

01
10

Andi Drebes – Performance Analysis of Task-Parallel Applications 4 / 9



Aftermath: Overview of the GUI

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

TimelineTimeline

Fi
lte

rs
Fi

lte
rs

Detailed text viewDetailed text view

St
at

is
tic

s
St

at
is

tic
s

Menu bar: derived metricsMenu bar: derived metrics

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

Time

Pr
oc

es
or

s

Activity
during

execution

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

Task execution (dark blue)

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

Task creation (white)

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

Searching for work (light blue)

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

Heatmap indicating task duration (white: short, red: long)

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

NUMA heatmap (blue: local accesses, pink: remote accesses)

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

Basic statistics for run-time states

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

Histogram for task duration + NUMA statistics

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

Filters: task type / duration, CPUs, event types, . . .

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Aftermath: Overview of the GUI

Detailed task view: duration, dependences, accessed NUMA nodes

Andi Drebes – Performance Analysis of Task-Parallel Applications 5 / 9



Demo: Seidel-2d

Current Iteration

Previous Iteration

Current Block

Benchmark parameters
I Double precision floats
I Matrix: 214 × 214 (2 GiB)
I Block: 28 × 28 (512 KiB)
I 60 iterations
I 254,977 tasks

Test system
I SGI UV 2000
I 24×Intel Xeon E5-4640
I Hyperthreading disabled
I 192 cores
I 24 NUMA nodes, 756 GiB RAM

Andi Drebes – Performance Analysis of Task-Parallel Applications 6 / 9



Demo: Seidel-2d

Current Iteration

Previous Iteration

Current Block

OpenStream implementation

Benchmark parameters
I Double precision floats
I Matrix: 214 × 214 (2 GiB)
I Block: 28 × 28 (512 KiB)
I 60 iterations
I 254,977 tasks

Test system
I SGI UV 2000
I 24×Intel Xeon E5-4640
I Hyperthreading disabled
I 192 cores
I 24 NUMA nodes, 756 GiB RAM

Andi Drebes – Performance Analysis of Task-Parallel Applications 6 / 9



Demo: Seidel-2d

Current Iteration

Previous Iteration

Current Block

OpenStream implementation

Benchmark parameters
I Double precision floats
I Matrix: 214 × 214 (2 GiB)
I Block: 28 × 28 (512 KiB)
I 60 iterations
I 254,977 tasks

Test system
I SGI UV 2000
I 24×Intel Xeon E5-4640
I Hyperthreading disabled
I 192 cores
I 24 NUMA nodes, 756 GiB RAM

Andi Drebes – Performance Analysis of Task-Parallel Applications 6 / 9



Demo: Seidel-2d

Current Iteration

Previous Iteration

Current Block

OpenStream implementation

Benchmark parameters
I Double precision floats
I Matrix: 214 × 214 (2 GiB)
I Block: 28 × 28 (512 KiB)
I 60 iterations
I 254,977 tasks

Test system
I SGI UV 2000
I 24×Intel Xeon E5-4640
I Hyperthreading disabled
I 192 cores
I 24 NUMA nodes, 756 GiB RAM

Andi Drebes – Performance Analysis of Task-Parallel Applications 6 / 9



Demo: Seidel-2d

Current Iteration

Previous Iteration

Current Block

OpenStream implementation

Benchmark parameters
I Double precision floats
I Matrix: 214 × 214 (2 GiB)
I Block: 28 × 28 (512 KiB)
I 60 iterations
I 254,977 tasks

Test system
I SGI UV 2000
I 24×Intel Xeon E5-4640
I Hyperthreading disabled
I 192 cores
I 24 NUMA nodes, 756 GiB RAM

Andi Drebes – Performance Analysis of Task-Parallel Applications 6 / 9



DEMO
1. Default, random work-stealing
2. Run-time optimized for NUMA



Impact on OpenStream

Run-time development & performance debugging
I NUMA-aware task and data placement
I Topology-aware work-stealing
I Overhead analysis

I Memory allocation
I Task creation

Application development & performance debugging
I Task granularity / available parallelism
I Partitioning: main tasks / auxiliary tasks
I Task creation
I Dependence patterns
I Hardware performance counter analysis

Andi Drebes – Performance Analysis of Task-Parallel Applications 7 / 9



Model-Centric Analysis of OpenMP Programs∗

Analysis of OpenMP programs
I Parallel loops

I Examine Partitioning
I Execution time per worker
I Filtering

I OpenMP 4 tasks
I OpenMP constructs: Barriers, single, . . .
I Hardware performance counters

Easy-to-use scripts and library
I Instrumented Clang / LLVM OpenMP run-time (KMP / Intel)

$ aftermath-openmp-trace -o events.ost -- <program> <args>

$ aftermath events.ost

∗Joint work with Jean-Baptiste Bréjon

Andi Drebes – Performance Analysis of Task-Parallel Applications 8 / 9



Model-Centric Analysis of OpenMP Programs∗

Analysis of OpenMP programs
I Parallel loops

I Examine Partitioning
I Execution time per worker
I Filtering

I OpenMP 4 tasks
I OpenMP constructs: Barriers, single, . . .
I Hardware performance counters

Easy-to-use scripts and library
I Instrumented Clang / LLVM OpenMP run-time (KMP / Intel)

$ aftermath-openmp-trace -o events.ost -- <program> <args>

$ aftermath events.ost

∗Joint work with Jean-Baptiste Bréjon

Andi Drebes – Performance Analysis of Task-Parallel Applications 8 / 9



Summary

Aftermath at a glance
I Fast and responsive UI, multiple connected views
I Various filters with immediate visual feedback
I Native support for dependent tasks
I Joint analysis applications + run-time
I Successfully used for performance debugging of OpenStream

Source code and tutorial available at
http://www.openstream.info/aftermath

I Free software license, small code base (< 30k lines of C code)
I Few dependences: GTK+, Cairo, Pango, Glibc, . . .

VM with Aftermath + OpenStream + sample traces available at
http://www.openstream.info/vm

OpenMP support very soon!

Andi Drebes – Performance Analysis of Task-Parallel Applications 9 / 9

http://www.openstream.info/aftermath
http://www.openstream.info/vm


Summary

Aftermath at a glance
I Fast and responsive UI, multiple connected views
I Various filters with immediate visual feedback
I Native support for dependent tasks
I Joint analysis applications + run-time
I Successfully used for performance debugging of OpenStream

Source code and tutorial available at
http://www.openstream.info/aftermath

I Free software license, small code base (< 30k lines of C code)
I Few dependences: GTK+, Cairo, Pango, Glibc, . . .

VM with Aftermath + OpenStream + sample traces available at
http://www.openstream.info/vm

OpenMP support very soon!

Andi Drebes – Performance Analysis of Task-Parallel Applications 9 / 9

http://www.openstream.info/aftermath
http://www.openstream.info/vm


Summary

Aftermath at a glance
I Fast and responsive UI, multiple connected views
I Various filters with immediate visual feedback
I Native support for dependent tasks
I Joint analysis applications + run-time
I Successfully used for performance debugging of OpenStream

Source code and tutorial available at
http://www.openstream.info/aftermath

I Free software license, small code base (< 30k lines of C code)
I Few dependences: GTK+, Cairo, Pango, Glibc, . . .

VM with Aftermath + OpenStream + sample traces available at
http://www.openstream.info/vm

OpenMP support very soon!

Andi Drebes – Performance Analysis of Task-Parallel Applications 9 / 9

http://www.openstream.info/aftermath
http://www.openstream.info/vm


Summary

Aftermath at a glance
I Fast and responsive UI, multiple connected views
I Various filters with immediate visual feedback
I Native support for dependent tasks
I Joint analysis applications + run-time
I Successfully used for performance debugging of OpenStream

Source code and tutorial available at
http://www.openstream.info/aftermath

I Free software license, small code base (< 30k lines of C code)
I Few dependences: GTK+, Cairo, Pango, Glibc, . . .

VM with Aftermath + OpenStream + sample traces available at
http://www.openstream.info/vm

OpenMP support very soon!
Andi Drebes – Performance Analysis of Task-Parallel Applications 9 / 9

http://www.openstream.info/aftermath
http://www.openstream.info/vm

	Trace-Based Analysis
	Overview of Aftermath
	Demo
	Conclusion

