
Language-Centric Performance Analysis of OpenMP
Programs with Aftermath

Andi Drebes

The University of Manchester
School of Computer Science

Advanced Processor Technologies
andi.drebes@manchester.ac.uk

Joint work with:
Jean-Baptiste Bréjon, Antoniu Pop, Karine Heydemann, Albert Cohen

IWOMP 2016

Analysis of OpenMP Programs

Hardware

Run-time OS

Application

Andi Drebes – Aftermath: Language-Centric Performance Analysis 1 / 10

Analysis of OpenMP Programs

Hardware

Run-time OS

Application

Andi Drebes – Aftermath: Language-Centric Performance Analysis 1 / 10

Analysis of OpenMP Programs

Programming model

#pragma omp task depend(...)
{ ... }

#pragma omp parallel for
for(int i = 0; i < N; i++)
{ ... }

Application Hardware

Run-time OS

Andi Drebes – Aftermath: Language-Centric Performance Analysis 1 / 10

New Tools for Performance Analysis

Frequent topics for performance analysis:
I Amount of parallelism and load balacing
I Duration of execution phases
I Synchronization overhead (e.g., barriers)
I Choice of an appropriate loop schedule
I Data distribution on NUMA systems
I Relate hardware events to loops / tasks

Our tools: Aftermath & Aftermath-OpenMP
I Aftermath: Graphical tool for performance analysis
I Aftermath-OpenMP: Instrumented LLVM/clang run-time

Andi Drebes – Aftermath: Language-Centric Performance Analysis 2 / 10

New Tools for Performance Analysis

Frequent topics for performance analysis:
I Amount of parallelism and load balacing
I Duration of execution phases
I Synchronization overhead (e.g., barriers)
I Choice of an appropriate loop schedule
I Data distribution on NUMA systems
I Relate hardware events to loops / tasks

Our tools: Aftermath & Aftermath-OpenMP
I Aftermath: Graphical tool for performance analysis
I Aftermath-OpenMP: Instrumented LLVM/clang run-time

Andi Drebes – Aftermath: Language-Centric Performance Analysis 2 / 10

Outline

1. Overview of Trace-based Analysis

2. Overview of Aftermath’s GUI

3. Demo

4. Overhead of Tracing

5. Summary & Conclusion

Trace-based Analysis with Aftermath

Application Hardware
Aftermath-OpenMP

Run-timeOS

Trace file

Andi Drebes – Aftermath: Language-Centric Performance Analysis 3 / 10

Trace-based Analysis with Aftermath

Application Hardware
Aftermath-OpenMP

Run-timeOS

Trace file

Aftermath

Visualizations &
Exploration

Statistics &
Accurate Numbers

Programming
Model-centric

Analysis

Andi Drebes – Aftermath: Language-Centric Performance Analysis 3 / 10

Terminology

#pragma omp parallel for schedule(static, 10)
for(int i = 0; i < 100; i++)
{ ... }

Andi Drebes – Aftermath: Language-Centric Performance Analysis 4 / 10

Terminology

Loop construct#pragma omp parallel for schedule(static, 10)
for(int i = 0; i < 100; i++)
{ ... }

Andi Drebes – Aftermath: Language-Centric Performance Analysis 4 / 10

Terminology

Loop construct

0 99Iteration space

Loop

#pragma omp parallel for schedule(static, 10)
for(int i = 0; i < 100; i++)
{ ... }

Andi Drebes – Aftermath: Language-Centric Performance Analysis 4 / 10

Terminology

Loop construct

0 99Iteration space

LoopC0 C1 C2 C3 C4 C5 C6 C7 C8 C9

#pragma omp parallel for schedule(static, 10)
for(int i = 0; i < 100; i++)
{ ... }

Andi Drebes – Aftermath: Language-Centric Performance Analysis 4 / 10

Terminology

Loop construct

0 99Iteration space

LoopC0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Chunk

#pragma omp parallel for schedule(static, 10)
for(int i = 0; i < 100; i++)
{ ... }

Andi Drebes – Aftermath: Language-Centric Performance Analysis 4 / 10

Terminology

Loop construct

0 99Iteration space

LoopC0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Chunk

Worker 0

Worker 1

Worker 2

C0 C3 C6 C9

C1 C4 C7

C2 C5 C8

[0-9] [30-39] [60-69] [90-99]

[10-19] [40-49] [70-79]

[20-29] [50-59] [80-89]

#pragma omp parallel for schedule(static, 10)
for(int i = 0; i < 100; i++)
{ ... }

Andi Drebes – Aftermath: Language-Centric Performance Analysis 4 / 10

Terminology

Loop construct

0 99Iteration space

LoopC0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Chunk

Worker 0

Worker 1

Worker 2

C0 C3 C6 C9

C1 C4 C7

C2 C5 C8

[0-9] [30-39] [60-69] [90-99]

[10-19] [40-49] [70-79]

[20-29] [50-59] [80-89]

Iteration set

#pragma omp parallel for schedule(static, 10)
for(int i = 0; i < 100; i++)
{ ... }

Andi Drebes – Aftermath: Language-Centric Performance Analysis 4 / 10

Terminology

Loop construct

0 99Iteration space

LoopC0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Chunk

Worker 0

Worker 1

Worker 2

C0 C3 C6 C9

C1 C4 C7

C2 C5 C8

[0-9] [30-39] [60-69] [90-99]

[10-19] [40-49] [70-79]

[20-29] [50-59] [80-89]

Iteration set

Worker 0

Worker 1

Worker 2

#pragma omp parallel for schedule(static, 10)
for(int i = 0; i < 100; i++)
{ ... }

Andi Drebes – Aftermath: Language-Centric Performance Analysis 4 / 10

Terminology

Loop construct

0 99Iteration space

LoopC0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Chunk

Worker 0

Worker 1

Worker 2

C0 C3 C6 C9

C1 C4 C7

C2 C5 C8

[0-9] [30-39] [60-69] [90-99]

[10-19] [40-49] [70-79]

[20-29] [50-59] [80-89]

Iteration set

Worker 0

Worker 1

Worker 2

#pragma omp parallel for schedule(static, 10)
for(int i = 0; i < 100; i++)
{ ... }

Andi Drebes – Aftermath: Language-Centric Performance Analysis 4 / 10

Terminology

Loop construct

0 99Iteration space

LoopC0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Chunk

Worker 0

Worker 1

Worker 2

C0 C3 C6 C9

C1 C4 C7

C2 C5 C8

[0-9] [30-39] [60-69] [90-99]

[10-19] [40-49] [70-79]

[20-29] [50-59] [80-89]

Iteration set

Worker 0

Worker 1

Worker 2

Iteration period Iteration period

#pragma omp parallel for schedule(static, 10)
for(int i = 0; i < 100; i++)
{ ... }

Andi Drebes – Aftermath: Language-Centric Performance Analysis 4 / 10

Aftermath: Overview of the GUI

Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Detailed Text viewDetailed Text view

Time lineTime line

Fi
lte

rs
Fi

lte
rs

St
at

is
tic

s
St

at
is

tic
s

Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Time line
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Time

Pr
oc

es
or

s Activity
during

execution

Time line
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Time

Pr
oc

es
or

s

Sequential Execution
(orange)

Time line: Run-time states
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Time

Pr
oc

es
or

s Parallel loop
(green)

Time line: Run-time states
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Time

Pr
oc

es
or

s

Barrier
Synchronization

(dark red)

Time line: Run-time states
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Time

Pr
oc

es
or

s No activity
(background visible)

Time line: Run-time states
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Time

Pr
oc

es
or

s

Time line: Loop constructs
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Time

Pr
oc

es
or

s

Time line: Loop constructs
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

State statistics
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

State statistics
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Histogram showing duration of iteration periods
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Histogram showing duration of iteration periods
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Detailed text view for parallel loops
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Detailed text view for parallel loops
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Filter for loop constructs
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Aftermath: Overview of the GUI

Filter for loop constructs
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10

Demo: NPB’s MG benchmark

Benchmark: NPB MG
I NPB 2.3 C implementation from the Omni Compiler Project
I C input class (512× 512 elements)

Test platform
I SGI UV 2000 (Xeon E5-4640)
I 192 cores (Hyperthreading disabled)
I 24 NUMA nodes, 756 GiB RAM
I LLVM/clang 3.8.0
I Aftermath-OpenMP for trace generation

Andi Drebes – Aftermath: Language-Centric Performance Analysis 6 / 10

DEMO

Demo: Summary

Execution phases
I Parallel initializations + Main Computation
I Sequential execution in between

Time spent in barriers
I States on time line / statistics panel

Load imbalance
I Sufficient parallelism
I High load imbalance, but not due to partitioning / schedule
I Same NUMA node→ Aprox. same execution time

Solution
I Change allocation scheme: one big allocation
I Reduce number of workers: #iters = n × #workers
I Result: 35× speedup

Andi Drebes – Aftermath: Language-Centric Performance Analysis 7 / 10

Demo: Summary

Execution phases
I Parallel initializations + Main Computation
I Sequential execution in between

Time spent in barriers
I States on time line / statistics panel

Load imbalance
I Sufficient parallelism
I High load imbalance, but not due to partitioning / schedule
I Same NUMA node→ Aprox. same execution time

Solution
I Change allocation scheme: one big allocation
I Reduce number of workers: #iters = n × #workers
I Result: 35× speedup

Andi Drebes – Aftermath: Language-Centric Performance Analysis 7 / 10

Demo: Summary

Execution phases
I Parallel initializations + Main Computation
I Sequential execution in between

Time spent in barriers
I States on time line / statistics panel

Load imbalance
I Sufficient parallelism
I High load imbalance, but not due to partitioning / schedule
I Same NUMA node→ Aprox. same execution time

Solution
I Change allocation scheme: one big allocation
I Reduce number of workers: #iters = n × #workers
I Result: 35× speedup

Andi Drebes – Aftermath: Language-Centric Performance Analysis 7 / 10

Demo: Summary

Execution phases
I Parallel initializations + Main Computation
I Sequential execution in between

Time spent in barriers
I States on time line / statistics panel

Load imbalance
I Sufficient parallelism
I High load imbalance, but not due to partitioning / schedule
I Same NUMA node→ Aprox. same execution time

Solution
I Change allocation scheme: one big allocation
I Reduce number of workers: #iters = n × #workers
I Result: 35× speedup

Andi Drebes – Aftermath: Language-Centric Performance Analysis 7 / 10

Overhead of Tracing

CG EP FT LU MG sparselu strassen alignment fft sort Geometric
mean (abs.)

10

5

0

5

10

15

20

0.88 0.60
-0.66

0.35
1.77

0.01

5.79

-0.03
0.24

4.07

0.46

NPB-2.3 (loop-based) BOTS 1.1.2 (task-based)

Relative Increase of Execution Time [%]
(mean for 50 runs / error bars: standard deviation)

Test system
I SGI UV 2000 (192 cores, 24 NUMA nodes)

Missing benchmarks
I Outlier: floorplan (+380% execution time; very small tasks)
I Segfaults (BT, nqueens, uts) / Excessive Execution time (IS) /

Verification Failure (health)

Andi Drebes – Aftermath: Language-Centric Performance Analysis 8 / 10

Overhead of Tracing

CG EP FT LU MG sparselu strassen alignment fft sort Geometric
mean (abs.)

10

5

0

5

10

15

20

0.88 0.60
-0.66

0.35
1.77

0.01

5.79

-0.03
0.24

4.07

0.46

NPB-2.3 (loop-based) BOTS 1.1.2 (task-based)

Relative Increase of Execution Time [%]
(mean for 50 runs / error bars: standard deviation)

Test system
I SGI UV 2000 (192 cores, 24 NUMA nodes)

Missing benchmarks
I Outlier: floorplan (+380% execution time; very small tasks)
I Segfaults (BT, nqueens, uts) / Excessive Execution time (IS) /

Verification Failure (health)
Andi Drebes – Aftermath: Language-Centric Performance Analysis 8 / 10

Using Aftermath & Aftermath-OpenMP

Drop-in replacement for libomp with wrapper script:
$ aftermath-openmp-trace -o events.ost -- <program> <args>

$ aftermath events.ost

Source code and tutorial:
http://www.openstream.info/aftermath

Virtual Machine
(Aftermath + Aftermath-OpenMP + sample traces + documentation):
http://www.openstream.info/vm

Andi Drebes – Aftermath: Language-Centric Performance Analysis 9 / 10

http://www.openstream.info/aftermath
http://www.openstream.info/vm

Using Aftermath & Aftermath-OpenMP

Drop-in replacement for libomp with wrapper script:
$ aftermath-openmp-trace -o events.ost -- <program> <args>

$ aftermath events.ost

Source code and tutorial:
http://www.openstream.info/aftermath

Virtual Machine
(Aftermath + Aftermath-OpenMP + sample traces + documentation):
http://www.openstream.info/vm

Andi Drebes – Aftermath: Language-Centric Performance Analysis 9 / 10

http://www.openstream.info/aftermath
http://www.openstream.info/vm

Summary

Aftermath
I Reactive graphical user interface for trace analysis
I Programming model-centric analysis: Loops and tasks

Aftermath-OpenMP
I Instrumented LLVM/clang OpenMP run-time
I Low tracing overhead

Future work
I Dependent tasks
I Automate recurring analyses

On-line resources
http://www.openstream.info/aftermath (Main website)
http://www.openstream.info/vm (VM image)

Andi Drebes – Aftermath: Language-Centric Performance Analysis 10 / 10

http://www.openstream.info/aftermath
http://www.openstream.info/vm

Summary

Aftermath
I Reactive graphical user interface for trace analysis
I Programming model-centric analysis: Loops and tasks

Aftermath-OpenMP
I Instrumented LLVM/clang OpenMP run-time
I Low tracing overhead

Future work
I Dependent tasks
I Automate recurring analyses

On-line resources
http://www.openstream.info/aftermath (Main website)
http://www.openstream.info/vm (VM image)

Andi Drebes – Aftermath: Language-Centric Performance Analysis 10 / 10

http://www.openstream.info/aftermath
http://www.openstream.info/vm

Summary

Aftermath
I Reactive graphical user interface for trace analysis
I Programming model-centric analysis: Loops and tasks

Aftermath-OpenMP
I Instrumented LLVM/clang OpenMP run-time
I Low tracing overhead

Future work
I Dependent tasks
I Automate recurring analyses

On-line resources
http://www.openstream.info/aftermath (Main website)
http://www.openstream.info/vm (VM image)

Andi Drebes – Aftermath: Language-Centric Performance Analysis 10 / 10

http://www.openstream.info/aftermath
http://www.openstream.info/vm

Summary

Aftermath
I Reactive graphical user interface for trace analysis
I Programming model-centric analysis: Loops and tasks

Aftermath-OpenMP
I Instrumented LLVM/clang OpenMP run-time
I Low tracing overhead

Future work
I Dependent tasks
I Automate recurring analyses

On-line resources
http://www.openstream.info/aftermath (Main website)
http://www.openstream.info/vm (VM image)

Andi Drebes – Aftermath: Language-Centric Performance Analysis 10 / 10

http://www.openstream.info/aftermath
http://www.openstream.info/vm

	Overview of Trace-based Analysis
	Overview of Aftermath's GUI
	Demo
	Overhead of Tracing
	Summary & Conclusion

