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Analysis of OpenMP Programs

Programming model

#pragma omp task depend(...)
{ ... }

#pragma omp parallel for
for(int i = 0; i < N; i++)
{ ... }
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New Tools for Performance Analysis

Frequent topics for performance analysis:
I Amount of parallelism and load balacing
I Duration of execution phases
I Synchronization overhead (e.g., barriers)
I Choice of an appropriate loop schedule
I Data distribution on NUMA systems
I Relate hardware events to loops / tasks

Our tools: Aftermath & Aftermath-OpenMP
I Aftermath: Graphical tool for performance analysis
I Aftermath-OpenMP: Instrumented LLVM/clang run-time
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Trace-based Analysis with Aftermath
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Terminology

#pragma omp parallel for schedule(static, 10)
for(int i = 0; i < 100; i++)
{ ... }
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Aftermath: Overview of the GUI
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Aftermath: Overview of the GUI
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Aftermath: Overview of the GUI

Histogram showing duration of iteration periods
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Aftermath: Overview of the GUI

Detailed text view for parallel loops
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Aftermath: Overview of the GUI

Filter for loop constructs
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Aftermath: Overview of the GUI

Filter for loop constructs
Andi Drebes – Aftermath: Language-Centric Performance Analysis 5 / 10



Demo: NPB’s MG benchmark

Benchmark: NPB MG
I NPB 2.3 C implementation from the Omni Compiler Project
I C input class (512× 512 elements)

Test platform
I SGI UV 2000 (Xeon E5-4640)
I 192 cores (Hyperthreading disabled)
I 24 NUMA nodes, 756 GiB RAM
I LLVM/clang 3.8.0
I Aftermath-OpenMP for trace generation
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DEMO



Demo: Summary

Execution phases
I Parallel initializations + Main Computation
I Sequential execution in between

Time spent in barriers
I States on time line / statistics panel

Load imbalance
I Sufficient parallelism
I High load imbalance, but not due to partitioning / schedule
I Same NUMA node→ Aprox. same execution time

Solution
I Change allocation scheme: one big allocation
I Reduce number of workers: #iters = n × #workers
I Result: 35× speedup
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Overhead of Tracing

CG EP FT LU MG sparselu strassen alignment fft sort Geometric
mean (abs.)
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Test system
I SGI UV 2000 (192 cores, 24 NUMA nodes)

Missing benchmarks
I Outlier: floorplan (+380% execution time; very small tasks)
I Segfaults (BT, nqueens, uts) / Excessive Execution time (IS) /

Verification Failure (health)
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Using Aftermath & Aftermath-OpenMP

Drop-in replacement for libomp with wrapper script:
$ aftermath-openmp-trace -o events.ost -- <program> <args>

$ aftermath events.ost

Source code and tutorial:
http://www.openstream.info/aftermath

Virtual Machine
(Aftermath + Aftermath-OpenMP + sample traces + documentation):
http://www.openstream.info/vm
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Summary

Aftermath
I Reactive graphical user interface for trace analysis
I Programming model-centric analysis: Loops and tasks

Aftermath-OpenMP
I Instrumented LLVM/clang OpenMP run-time
I Low tracing overhead

Future work
I Dependent tasks
I Automate recurring analyses

On-line resources
http://www.openstream.info/aftermath (Main website)
http://www.openstream.info/vm (VM image)
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