
Aftermath
A graphical tool for performance analysis and debugging of

fine-grained task-parallel programs and run-time systems

Andi Drebes

Université Pierre et Marie Curie
Laboratoire d’Informatique de Paris VI

andi.drebes@lip6.fr

Joint work with:
Antoniu Pop, Karine Heydemann

Albert Cohen, Nathalie Drach

MULTIPROG’14, January 22nd, 2014

Open tream



Context

Hardware and software environment

I Multi-core / many-core NUMA systems

I Task-parallel languages based on fine-grained tasks

Efficient exploitation of the machine

I Enough parallelism to keep processors busy

I Data locality on NUMA systems

I Low management overhead

I Requires analysis of complex interactions:
Application / Run-time / Machine

Tools for performance debugging

I Trace-based analysis

Andi Drebes – Aftermath 2 / 12



Context

Hardware and software environment

I Multi-core / many-core NUMA systems

I Task-parallel languages based on fine-grained tasks

Efficient exploitation of the machine

I Enough parallelism to keep processors busy

I Data locality on NUMA systems

I Low management overhead

I Requires analysis of complex interactions:
Application / Run-time / Machine

Tools for performance debugging

I Trace-based analysis

Andi Drebes – Aftermath 2 / 12



Context

Hardware and software environment

I Multi-core / many-core NUMA systems

I Task-parallel languages based on fine-grained tasks

Efficient exploitation of the machine

I Enough parallelism to keep processors busy

I Data locality on NUMA systems

I Low management overhead

I Requires analysis of complex interactions:
Application / Run-time / Machine

Tools for performance debugging

I Trace-based analysis

Andi Drebes – Aftermath 2 / 12



Outline

1. Trace-based analysis

2. Overview on Aftermath

3. Live demo

4. Use cases

5. Summary & Questions

Andi Drebes – Aftermath 3 / 12



Capturing event data

Trace
file

Application

Hardware
- Stall cycles
- Cache misses
- Local / remote memory accesses
- ...

Run-time
- Task creation
- Inter-task communication
- Synchronization
- ...

Trace data

I Captured during execution
I Event types

I Discrete events
I State changes
I Counter values

I High-level events

I Low-level events

I Dumped to trace file

Andi Drebes – Aftermath 4 / 12



Off-line analysis

Off-line analysis scenarios

I Trace exploration
I Optimization opportunities
I Presence of a bottleneck?
I No precise idea where to look

I Hypotheses testing
I Precise idea of performance

anomaly
I Check if the hypothesis holds

I Cyclic pattern during application
/ run-time development and
debugging

I Need for a tool supporting
exploration and hypotheses
testing

Trace
exploration

Hypo-
thesis
testing

Proto-
typing a
solution

Executing
the appli-

cation

Andi Drebes – Aftermath 5 / 12



Requirements

Graphical representation

I Static and dynamic information

I Make strong correlations visible

Filters

I Control over amount of detail
I Task type, duration, processors, . . .

I Ability to combine filters

Statistical counters

I Quantifying events

I Derived metrics

User interface

I Support for large trace files

I Reactive UI with immediate feedback

Andi Drebes – Aftermath 6 / 12



Requirements

Graphical representation

I Static and dynamic information

I Make strong correlations visible

Filters

I Control over amount of detail
I Task type, duration, processors, . . .

I Ability to combine filters

Statistical counters

I Quantifying events

I Derived metrics

User interface

I Support for large trace files

I Reactive UI with immediate feedback

Andi Drebes – Aftermath 6 / 12



Requirements

Graphical representation

I Static and dynamic information

I Make strong correlations visible

Filters

I Control over amount of detail
I Task type, duration, processors, . . .

I Ability to combine filters

Statistical counters

I Quantifying events

I Derived metrics

User interface

I Support for large trace files

I Reactive UI with immediate feedback

Andi Drebes – Aftermath 6 / 12



Requirements

Graphical representation

I Static and dynamic information

I Make strong correlations visible

Filters

I Control over amount of detail
I Task type, duration, processors, . . .

I Ability to combine filters

Statistical counters

I Quantifying events

I Derived metrics

User interface

I Support for large trace files

I Reactive UI with immediate feedback
Andi Drebes – Aftermath 6 / 12



Why a new tool?

Existing approaches

I Trace analysis: Well-known technique, widely used in HPC

I Existing tools: Paraver, Vampir, Paraprof / TAU, . . .

I Optimized for clusters / message passing

I Many good ideas in these tools, but none of them fully
satisfied our requirements

Additional requirements in the OpenStream project

I OpenStream: OpenMP extension, fine-grained data-flow tasks

I Native support for tasks
I Resource-model

I NUMA analysis
I Data-flow analysis

I Interactive exploration

Andi Drebes – Aftermath 7 / 12



Why a new tool?

Existing approaches

I Trace analysis: Well-known technique, widely used in HPC

I Existing tools: Paraver, Vampir, Paraprof / TAU, . . .

I Optimized for clusters / message passing

I Many good ideas in these tools, but none of them fully
satisfied our requirements

Additional requirements in the OpenStream project

I OpenStream: OpenMP extension, fine-grained data-flow tasks

I Native support for tasks
I Resource-model

I NUMA analysis
I Data-flow analysis

I Interactive exploration

Andi Drebes – Aftermath 7 / 12



Aftermath: main user interface

Andi Drebes – Aftermath 8 / 12



Aftermath: main user interface

TimelineTimeline

F
il

te
rs

F
il

te
rs

Detailed text viewDetailed text view

S
ta

ti
st

ic
s

S
ta

ti
st

ic
s

Menu bar: derived metricsMenu bar: derived metrics

Andi Drebes – Aftermath 8 / 12



Aftermath: main user interface

Timeline component
I Processor activity over time

I State changes
I Communication
I Hardware counters

I One “lane” per CPU

I Multiple views:
States / Heatmap / NUMA

Andi Drebes – Aftermath 9 / 12



Aftermath: main user interface

Filters
I Task-related (type, length)

I Subset of CPUs

I Event types

I Communication (size, type)
I Data-flow

I Specific data-flow buffers
I Specific NUMA nodes

Andi Drebes – Aftermath 9 / 12



Aftermath: main user interface

Statistical graphs and counters
I Selectable area

I Number of tasks

I Average duration

I Time spent in different states

I Task duration histogram

I NUMA node comm. matrix

Andi Drebes – Aftermath 9 / 12



Aftermath: main user interface

Detailed textual information
I Selected task / state

I Task / state duration

I Task creation

I Data-flow information
I Producers / Consumers
I Reads / writes per NUMA node

Andi Drebes – Aftermath 9 / 12



Aftermath: main user interface

Derived metrics
I Aggregation of CPUs

I Ratio of counters

I Parallelism on average

I NUMA node contention

I Average task duration

Andi Drebes – Aftermath 9 / 12



Example trace: Gauß-Seidel iterations

Iteration i+1

Iteration i

Input dependency

Stream reference

Benchmark from the OpenStream project

I Data-flow implementation of a 5-point stencil

I Main tasks + Auxiliary tasks (initialization, termination)

I Two traces: unoptimized / optimized task and data placement

Hardware environment

I 64 cores

I 8 NUMA domains

Andi Drebes – Aftermath 10 / 12



LIVE DEMO



Use cases

Run-time development & performance debugging

I NUMA-aware task and data placement

I Topology-aware work-stealing
I Overhead analysis

I Memory allocation
I Task creation

Application development & performance debugging

I Task granularity / available parallelism

I Partitioning: main tasks / auxiliary tasks

I Task creation

I Dependence patterns

I Hardware performance counter analysis

Andi Drebes – Aftermath 11 / 12



Summary

Aftermath at a glance
I Fast and responsive UI
I Various filters with immediate visual feedback
I Native support for dependent tasks
I Multiple connected views
I Successfully used for performance debugging of the

OpenStream run-time and applications

Source code and tutorial available at
http://www.openstream.info/aftermath

I Free software license, small code base (< 15k lines of C code)
I Few dependences: GTK+, Cairo, Pango, Glibc, . . .

Future Work
I More detailed resource model
I Trace compression
I Your idea here!

Andi Drebes – Aftermath 12 / 12

http://www.openstream.info/aftermath


Summary

Aftermath at a glance
I Fast and responsive UI
I Various filters with immediate visual feedback
I Native support for dependent tasks
I Multiple connected views
I Successfully used for performance debugging of the

OpenStream run-time and applications

Source code and tutorial available at
http://www.openstream.info/aftermath

I Free software license, small code base (< 15k lines of C code)
I Few dependences: GTK+, Cairo, Pango, Glibc, . . .

Future Work
I More detailed resource model
I Trace compression
I Your idea here!

Andi Drebes – Aftermath 12 / 12

http://www.openstream.info/aftermath


Summary

Aftermath at a glance
I Fast and responsive UI
I Various filters with immediate visual feedback
I Native support for dependent tasks
I Multiple connected views
I Successfully used for performance debugging of the

OpenStream run-time and applications

Source code and tutorial available at
http://www.openstream.info/aftermath

I Free software license, small code base (< 15k lines of C code)
I Few dependences: GTK+, Cairo, Pango, Glibc, . . .

Future Work
I More detailed resource model
I Trace compression
I Your idea here!

Andi Drebes – Aftermath 12 / 12

http://www.openstream.info/aftermath

	Trace-based analysis
	Overview on Aftermath
	Live demo
	Use cases
	Summary & Questions

