Aftermath

A graphical tool for performance analysis and debugging of
fine-grained task-parallel programs and run-time systems

Andi Drebes

Université Pierre et Marie Curie
Laboratoire d'Informatique de Paris VI
andi.drebes@lip6.fr

Joint work with:
Antoniu Pop, Karine Heydemann
Albert Cohen, Nathalie Drach

MULTIPROG'14, January 22nd, 2014

U~,MmcC ﬁp OpenStream

1Al SORBONNE

—

Hardware and software environment

» Multi-core / many-core NUMA systems

» Task-parallel languages based on fine-grained tasks

N
=
N

Andi Drebes — Aftermath

—

Hardware and software environment

» Multi-core / many-core NUMA systems
» Task-parallel languages based on fine-grained tasks

Efficient exploitation of the machine

» Enough parallelism to keep processors busy
» Data locality on NUMA systems
» Low management overhead

» Requires analysis of complex interactions:
Application / Run-time / Machine

Andi Drebes — Aftermath

—

Hardware and software environment

» Multi-core / many-core NUMA systems

» Task-parallel languages based on fine-grained tasks
Efficient exploitation of the machine

» Enough parallelism to keep processors busy
» Data locality on NUMA systems
» Low management overhead

» Requires analysis of complex interactions:
Application / Run-time / Machine

Tools for performance debugging

» Trace-based analysis

N
=
N

Andi Drebes — Aftermath

—

1. Trace-based analysis

2. Overview on Aftermath
3. Live demo

4. Use cases

5. Summary & Questions

Andi Drebes — Aftermath 3/12

Application Trace data
t » Captured during execution
LTI 1101 [T — » Event types
sy » Discrete events
- Inter-task communication i
- Synchronization : » State changes
) » Counter values
¢ ; » High-level events
Hardware e-------------------{
~ stall cycles » Low-level events
- Cache misses .
- Local / remote memory accesses » Dum ped to trace file

P

Trace
file

Andi Drebes — Aftermath 4

Off-line analysis

Off-line analysis scenarios

Hypo-
thesis
testing

» Trace exploration
» Optimization opportunities
» Presence of a bottleneck?
» No precise idea where to look

Proto-

typing a
solution

» Hypotheses testing
» Precise idea of performance

anomaly
» Check if the hypothesis holds

Executing
the appli-
cation

» Cyclic pattern during application
/ run-time development and
debugging

» Need for a tool supporting
exploration and hypotheses
testing

Andi Drebes — Aftermath

I EEEEEEEEEEIEEEE=E—————m—
Requirements
@ Graphical representation
» Static and dynamic information

» Make strong correlations visible

Andi Drebes — Aftermath 6 /12

R ERRERERREEEEE———————————————————————————————
Requirements
@ Graphical representation
» Static and dynamic information
» Make strong correlations visible

% Filters
» Control over amount of detail

» Task type, duration, processors, ...

» Ability to combine filters

Andi Drebes — Aftermath 6 /12

R ERRERERREEEEE———————————————————————————————
Requirements
@ Graphical representation
» Static and dynamic information
» Make strong correlations visible

% Filters
» Control over amount of detail

» Task type, duration, processors, ...

» Ability to combine filters

Statistical counters
» Quantifying events

» Derived metrics

Andi Drebes — Aftermath 6 /12

I EEEEEEEEEEIEEEE=E—————m—
Requirements
@ Graphical representation
» Static and dynamic information

» Make strong correlations visible

% Filters
» Control over amount of detail

» Task type, duration, processors, ...

» Ability to combine filters

Statistical counters
» Quantifying events
» Derived metrics
User interface

@ » Support for large trace files

» Reactive Ul with immediate feedback
Andi Drebes — Aftermath 6/ 12

Why a new tool?

Existing approaches

» Trace analysis: Well-known technique, widely used in HPC
» Existing tools: Paraver, Vampir, Paraprof / TAU, ...

» Optimized for clusters / message passing

v

Many good ideas in these tools, but none of them fully
satisfied our requirements

Andi Drebes — Aftermath 7/12

Why a new tool?

Existing approaches

» Trace analysis: Well-known technique, widely used in HPC
» Existing tools: Paraver, Vampir, Paraprof / TAU, ...
» Optimized for clusters / message passing

» Many good ideas in these tools, but none of them fully
satisfied our requirements

Additional requirements in the OpenStream project

» OpenStream: OpenMP extension, fine-grained data-flow tasks
» Native support for tasks

» Resource-model

» NUMA analysis
» Data-flow analysis

» Interactive exploration

Andi Drebes — Aftermath 7/12

Aftermath: main user interface

n
Ble Dsta e View Help
1@ o | (@~ e (O

[Fasks | counters | Frames |> [Graph | code [Statistics | Heatmap

Task types 3543095911 - 6922786085
Addess symbo $a063 o considered

030 (o symbel foung 5143 Meyees | task (avg)
03401550 (o symbl found

04401610 (o symbol found

ox403610 (o symbol founc
04401600 (o symbol ound
03402930 (o symbl found
04401080 (o symbol ound
0340250 (o symbl found
04401430 (o symbol found
03402440 (o symbl founc
04401100 (o symbol found
04402050 (0 symbl found
03402120 (o symbl founc
0440210 (o symbol found
0x4023c0 (o symbl founc

Task |

203M

Communication

YRR RS E R

==
T

e
CRGWOSOP
) gnore drection

.seecknone 0 Exclude reflexive transfers
o selectal © # events ony
Rel. min (i1 ;
Writes to NUMA nodes Rl)
Node Node 0to 6
i 650,99 MiB (57.033% max.)
@] Node 0
4] Node 1
@) Node 2 i cye par
a6 039
At least [0 3

= Select none

e Select al
Length
(= BT Selected event Active task 000% 000
Min Actvetass 001c0 (0u) =
Max State 1t sk duration [} I Sslect fun ool

From usnsswou o as33sanass Clear selection

Duration: 3.16 My Active fame: 0x/bdf0dshoso

49 Aoply. mdinshi o
[CPU 13: state 1 (taskexec) from 4598450883 to 4605147164, duration: 6,69 Mcycles, active task: 0x4051cO (nul)

Andi Drebes — Aftermat

Aftermath: main user interface

tracesicol
TP

u bar: derived metrics

[TTasks | Counters ames |/ | Grapn | Code
Task types

Address Symbol

00 |(no symbol founc|
0x401550 (no symbol founc|
0x401610 | (n0 symbol founc
0x401610 | (n0 symbol founc &
0x401800 | (n0 symbol founc
0x401930 | (no symbol founc|
0x401a80 | (n0 symbol founc|
0x401c 50 danaunbol founc!

0x4014; m hol foun

@) Node 2
At least [0 Jo

= Select none

e select al
Length

) Fiter tasks by length ettt Active task

Min cru. Active task:_0u105fc0 (nul) (g

= mDetailed text view ,

/CPU 13: state 1 (taskexec) from 4598450883 to 4605147164, duration: 6,69 Mcycles, active task: 0x4051cO (nul)

Statistics | Heatmap
3943095911 - 6922786085
2,98 Geycles selacted

3463 tasks considered

5.43 Meycles / task (avg)

Task length distribution

203M

Commu

E"‘%
c Efi:fi =
oo

Rel. max: - o)
Node 0 to 6
650,99 MiB ()

Select from graph

Clear selection

Andi Drebes — Aftermat

e
Aftermath: main user interface

Timeline component

» Processor activity over time » One “lane” per CPU
> State changes » Multiple views:
> Communication States / Heatmap / NUMA

» Hardware counters

Andi Drebes — Aftermath 9 /12

e
Aftermath: main user interface

Filters
» Task-related (type, length) » Communication (size, type)
» Subset of CPUs » Data-flow

» Specific data-flow buffers

» Event types
YP » Specific NUMA nodes

Andi Drebes — Aftermath 9/12

e
Aftermath: main user interface

Statistical graphs and counters

» Selectable area » Time spent in different states
» Number of tasks » Task duration histogram
» Average duration » NUMA node comm. matrix

Andi Drebes — Aftermath 9/12

e
Aftermath: main user interface

Detailed textual information

> Selected task / state » Data-flow information

» Task / state duration » Producers / Consumers

» Reads / writes per NUMA node
» Task creation / P

Andi Drebes — Aftermath 9 /12

e
Aftermath: main user interface

Derived metrics
» Aggregation of CPUs » NUMA node contention

» Ratio of counters » Average task duration

» Parallelism on average

Andi Drebes — Aftermath 9 /12

I EEEEEEEEEEIEEEE=E—————m—
Example trace: GauB-Seidel iterations

Iteration i+1

—» Input dependency
Stream reference

Iteration i

Benchmark from the OpenStream project

» Data-flow implementation of a 5-point stencil

» Main tasks + Auxiliary tasks (initialization, termination)

» Two traces: unoptimized / optimized task and data placement
Hardware environment

» 64 cores

» 8 NUMA domains

Andi Drebes — Aftermath

LIVE DEMO

e
Use cases

Run-time development & performance debugging
» NUMA-aware task and data placement

» Topology-aware work-stealing
» Overhead analysis

» Memory allocation
» Task creation

Application development & performance debugging

» Task granularity / available parallelism

v

Partitioning: main tasks / auxiliary tasks

Task creation

v

v

Dependence patterns

v

Hardware performance counter analysis

Andi Drebes — Aftermath 11 /12

Aftermath at a glance
» Fast and responsive Ul

Various filters with immediate visual feedback
Native support for dependent tasks

Multiple connected views

Successfully used for performance debugging of the
OpenStream run-time and applications

v

vV vy

Andi Drebes — Aftermath 12/ 12

http://www.openstream.info/aftermath

Aftermath at a glance
» Fast and responsive Ul

Various filters with immediate visual feedback
Native support for dependent tasks

Multiple connected views

Successfully used for performance debugging of the
OpenStream run-time and applications

v

vV vy

Source code and tutorial available at
http://www.openstream.info/aftermath
» Free software license, small code base (< 15k lines of C code)
» Few dependences: GTK+, Cairo, Pango, Glibc, ...

Andi Drebes — Aftermath 12 /12

http://www.openstream.info/aftermath

Aftermath at a glance
» Fast and responsive Ul

Various filters with immediate visual feedback
Native support for dependent tasks

Multiple connected views

Successfully used for performance debugging of the
OpenStream run-time and applications

v

vV vy

Source code and tutorial available at
http://www.openstream.info/aftermath
» Free software license, small code base (< 15k lines of C code)
» Few dependences: GTK+, Cairo, Pango, Glibc, ...
Future Work
» More detailed resource model
» Trace compression
» Your idea here!

Andi Drebes — Aftermath 12 / 12

http://www.openstream.info/aftermath

	Trace-based analysis
	Overview on Aftermath
	Live demo
	Use cases
	Summary & Questions

