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Hardware and software environment

» Multi-core / many-core NUMA systems

» Task-parallel languages based on fine-grained tasks
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Hardware and software environment

» Multi-core / many-core NUMA systems
» Task-parallel languages based on fine-grained tasks

Efficient exploitation of the machine

» Enough parallelism to keep processors busy
» Data locality on NUMA systems
» Low management overhead

» Requires analysis of complex interactions:
Application / Run-time / Machine
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Tools for performance debugging

» Trace-based analysis
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1. Trace-based analysis

2. Overview on Aftermath
3. Live demo

4. Use cases

5. Summary & Questions
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Application Trace data
t » Captured during execution
LTI 1101 [ T — » Event types
sy » Discrete events
- Inter-task communication i
- Synchronization : » State changes
) » Counter values
¢ ; » High-level events
Hardware e-------------------{
~ stall cycles » Low-level events
- Cache misses .
- Local / remote memory accesses » Dum ped to trace file
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Off-line analysis

Off-line analysis scenarios

Hypo-
thesis
testing

» Trace exploration
» Optimization opportunities
» Presence of a bottleneck?
» No precise idea where to look

Proto-

typing a
solution

» Hypotheses testing
» Precise idea of performance

anomaly
» Check if the hypothesis holds

Executing
the appli-
cation

» Cyclic pattern during application
/ run-time development and
debugging

» Need for a tool supporting
exploration and hypotheses
testing
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Requirements
@ Graphical representation
» Static and dynamic information

» Make strong correlations visible
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Requirements
@ Graphical representation
» Static and dynamic information

» Make strong correlations visible

% Filters
» Control over amount of detail

» Task type, duration, processors, ...

» Ability to combine filters

Statistical counters
» Quantifying events
» Derived metrics
User interface

@ » Support for large trace files

» Reactive Ul with immediate feedback
Andi Drebes — Aftermath 6/ 12



Why a new tool?

Existing approaches

» Trace analysis: Well-known technique, widely used in HPC
» Existing tools: Paraver, Vampir, Paraprof / TAU, ...

» Optimized for clusters / message passing

v

Many good ideas in these tools, but none of them fully
satisfied our requirements
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Why a new tool?

Existing approaches

» Trace analysis: Well-known technique, widely used in HPC
» Existing tools: Paraver, Vampir, Paraprof / TAU, ...
» Optimized for clusters / message passing

» Many good ideas in these tools, but none of them fully
satisfied our requirements

Additional requirements in the OpenStream project

» OpenStream: OpenMP extension, fine-grained data-flow tasks
» Native support for tasks

» Resource-model

» NUMA analysis
» Data-flow analysis

» Interactive exploration
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Aftermath: main user interface
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Aftermath: main user interface
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Aftermath: main user interface

Timeline component

» Processor activity over time » One “lane” per CPU
> State changes » Multiple views:
> Communication States / Heatmap / NUMA

» Hardware counters
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Aftermath: main user interface

Filters
» Task-related (type, length) » Communication (size, type)
» Subset of CPUs » Data-flow

» Specific data-flow buffers

» Event types
YP » Specific NUMA nodes
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Aftermath: main user interface

Statistical graphs and counters

» Selectable area » Time spent in different states
» Number of tasks » Task duration histogram
» Average duration » NUMA node comm. matrix
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Aftermath: main user interface

Detailed textual information

> Selected task / state » Data-flow information

» Task / state duration » Producers / Consumers

» Reads / writes per NUMA node
» Task creation / P
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Aftermath: main user interface

Derived metrics
» Aggregation of CPUs » NUMA node contention

» Ratio of counters » Average task duration

» Parallelism on average
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Example trace: GauB-Seidel iterations

Iteration i+1

—» Input dependency
Stream reference

Iteration i

Benchmark from the OpenStream project

» Data-flow implementation of a 5-point stencil

» Main tasks + Auxiliary tasks (initialization, termination)

» Two traces: unoptimized / optimized task and data placement
Hardware environment

» 64 cores

» 8 NUMA domains
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Use cases

Run-time development & performance debugging
» NUMA-aware task and data placement

» Topology-aware work-stealing
» Overhead analysis

» Memory allocation
» Task creation

Application development & performance debugging

» Task granularity / available parallelism

v

Partitioning: main tasks / auxiliary tasks

Task creation

v

v

Dependence patterns

v

Hardware performance counter analysis
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Aftermath at a glance
» Fast and responsive Ul

Various filters with immediate visual feedback
Native support for dependent tasks

Multiple connected views

Successfully used for performance debugging of the
OpenStream run-time and applications
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Source code and tutorial available at
http://www.openstream.info/aftermath
» Free software license, small code base (< 15k lines of C code)
» Few dependences: GTK+, Cairo, Pango, Glibc, ...
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Aftermath at a glance
» Fast and responsive Ul

Various filters with immediate visual feedback
Native support for dependent tasks

Multiple connected views

Successfully used for performance debugging of the
OpenStream run-time and applications
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Source code and tutorial available at
http://www.openstream.info/aftermath
» Free software license, small code base (< 15k lines of C code)
» Few dependences: GTK+, Cairo, Pango, Glibc, ...
Future Work
» More detailed resource model
» Trace compression
» Your idea here!
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