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Abstract. We present Aftermath, an open source graphical tool de-
signed to assist in the performance debugging process of task-parallel
programs by visualizing, filtering and analyzing execution traces interac-
tively. To efficiently exploit increasingly complex and concurrent hard-
ware architectures, both the application and the run-time system that
manages task execution must be highly optimized. However, detecting
performance anomalies is challenging as bottlenecks can arise directly
from the application, the run-time or interaction with the hardware. In
Aftermath, key metrics and indicators, such as task duration, state in-
formation, hardware performance counter values and data exchanges can
be visualized jointly, aggregated and related to the machine’s topology.
The tool supports traces of up to several gigabytes, with fast and in-
tuitive navigation and on-line generation of new derived metrics. As it
has proven invaluable to optimize both OpenStream’s run-time and ap-
plications, we illustrate Aftermath on genuine cases encountered in the
OpenStream project.
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1 Introduction

With widely available, inexpensive multi-core processors, the main bottleneck
has become parallel software rather than hardware. To help programmers ex-
press parallelism, a recent trend in parallel programming languages is to rely
on fine-grained tasks whose execution is managed by a run-time system [1–5].
However, such abstractions only help to express the available parallelism but
cannot help in detecting and correcting performance issues that arise from the
complex interactions with the hardware.

Thus, a major challenge remains: to efficiently exploit the resources of in-
creasingly complex parallel hardware architectures. This entails: (1) ensuring
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that enough parallelism is available during execution to exploit all processors;
and (2) efficiently managing accesses to shared objects and optimizing data
transfers to avoid contention and high-latency memory accesses in NUMA sys-
tems.

While some problems can only be addressed in the implementation of the
application, many others may be generalized and handled in the run-time sys-
tem. Performance bottlenecks can therefore occur in any of the two components
or their interaction with the operating system or the hardware. The first step
towards a solution is thus to characterize and locate the problem, but rely-
ing only global statistics or prototyping solutions for different causes until the
problem disappears is often impractical due to system complexity. A visual rep-
resentation of events, system entities and their relationships can provide the in-
sight necessary for an accurate analysis, sorting causes and effects, and tracking
application-specific anomalies from inefficiencies in the run-time system’s heuris-
tics. The information about these events can be collected and recorded into a
trace file which can then be used by a tool for off-line analysis and visualization.

We present Aftermath, a tool for interactive off-line visualization, filtering
and analysis of execution traces. Different key metrics and indicators can be
displayed jointly, which accelerates the discovery of significant correlations. For
more complex relationships, Aftermath offers powerful filtering mechanisms and
is able to relate information to the machine’s topology. A responsive graphical
user interface gives quick access to all of these features, allowing to explore
traces rapidly and to control the degree of detail that is needed at each step of
the analysis. Aftermath has been designed for task-parallel languages in general,
and to analyze the performance of dependent task programs in particular.

In this paper we discuss the features and implementation of Aftermath in
the context of a state-of-the-art task-parallel language, OpenStream [2], a data-
flow, stream programming extension of OpenMP. Using performance anomalies
encountered in the OpenStream project, we illustrate how Aftermath helps pro-
grammers debug the performance of applications and run-time systems.

The remainder of this document is organized as follows. In Section 2, we de-
fine our requirements for performance analysis and trace visualization. Section 3
presents the interface of Aftermath and its main functionality. We then illustrate,
in Section 4, how Aftermath has been used to detect performance anomalies lo-
cated in user applications. An example for analysis of run-time systems is given
in Section 5. Existing tools for trace visualization are summarized in section 6.

2 Requirements for performance analysis

We identified two key scenarios, frequently occurring in the performance debug-
ging process. In the first case, the programmer suspects that there is a perfor-
mance anomaly or is looking for optimization opportunities, but has not identi-
fied any specific issues. Browsing through an execution trace, which we refer to as
trace exploration, can help building up a hypothesis by identifying sub-optimal
program behavior. In the second case, the programmer has already developed
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one or more hypotheses and tries to confirm or to refute them. Performance de-
bugging is often an iterative refinement process, alternating between these two
situations. An application for trace visualization and analysis should therefore
provide data selection and visualization tools that fit both situations.

2.1 Trace visualization

Trace files generally contain two types of information: (1) static information
about the execution context, e.g., the machine topology, the number of worker
threads, the different tasks or work functions; and (2) dynamic information on
execution events, e.g, worker state transitions, communication events and hard-
ware performance counter values. For efficient analysis, basic topological, tem-
poral and relational aspects need to be represented adequately at the same time.
The user should be able to:

– Distinguish the activity of different processors and worker threads.
– Observe activity over time and the evolution of metrics.
– Precisely identify the types of events.
– Determine involved entities, e.g., source and destination of data exchanges.

The graphical representation should provide adequate support to make ap-
parent any strong correlations between events. For example, if a performance
issue only occurs on specific processors, in specific intervals or after specific
events, this behavior should be directly identifiable on the visual representation.

The interactive exploration of traces is an essential aspect that provides a
quick overview on the trace data and helps develop a working hypothesis. Navi-
gation along the different dimensions, e.g., changing the interval to be displayed,
should therefore be intuitive to the user. With trace files of up to several giga-
bytes, rendering needs to be sufficiently fast during trace exploration.

2.2 Control over the amount of detail

For exploration of specific aspects or in order to reduce the amount of data
to be visualized, it must be possible to filter the information from the trace,
such that only relevant information is displayed. The result should be visible
immediately when the filter is applied. Filters are also an important tool when
testing hypotheses. In order to check if an assumption is correct, the user needs
to filter out all situations for which the premise of the hypothesis does not hold.
As conditions can be complex, it should be possible to combine filters easily.

However, even with powerful filtering schemes, visual feedback is not always
sufficiently precise for a distinct conclusion. In such cases it may be necessary to
statistically correlate events, which means that it should be possible to aggregate
trace data and display statistical information on event distributions, either pre-
sented in separate views or along with the information that was quantified. The
latter case might enable the user to draw conclusions on relationships between
existing and newly aggregated aspects. If none of the basic statistical counters
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alone can provide enough information about a relationship, it is essential to be
able to combine them. The user should be guided through this process by a user
interface that allows to precisely select which information should be derived and
how it should be displayed.

Finally, it must also be possible to obtain detailed information about specific
events. This can help detecting outliers or to develop generalized rules from par-
ticular situations. For example, the user could select a few corner cases for task
duration one after another and then try to figure out the generalized conditions
for fast or slow task execution.

3 Aftermath

Aftermath4 has specifically been designed to meet the requirements outlined in
the previous Section, allowing fast, interactive, visual exploration and analysis
of traces generated by fine-grained task-parallel applications and their run-time
systems, executing on modern many-core architectures. In this section, we give
an overview on Aftermath’s design and its features, we present the layout of its
graphical user interface, the trace format required and we explain how Aftermath
can exploit information from application symbol tables and trace annotations.

3.1 Organization of the main user interface

Figure 1 shows Aftermath’s main window, composed of five different parts:

1. A timeline component placed in the center shows the activity of each of the
processors over time (e.g. the different states of the worker threads associated
to the processors, evolution of performance counter data collected using the
PAPI library [6] and specific discrete events, such as task creations, and
communication between workers).

2. A set of filters for various basic properties at the left side allows to control
what is shown by the timeline component (e.g. only tasks of a specific type,
tasks whose execution time is in a certain range, tasks that write to certain
NUMA nodes, etc.).

3. The right side contains a group of aggregating, statistical views that help
quantifying basic information for a user-defined interval from the timeline
view (e.g. task duration in a histogram, average parallelism and a commu-
nication matrix).

4. The bottom part is reserved for detailed textual information about a selected
state and the task execution associated to it (e.g. the task and state type,
the duration and data-flow-specific information about the producers of the
task’s input data as well as the consumers of its output data).

5. A set of generators, accessible from the menu bar at the top, allows to derive
metrics from high-level events or to combine existing statistical counters
(e.g. average task duration, number of bytes exchanged between specific

4 Available under a GNU GPL license at http://www.openstream.info
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Fig. 1: Aftermath’s main window: timeline (1), filters (2), statistics (3), informa-
tion on selected tasks / events (4) and menu bar for derived metrics (5).

NUMA nodes, ratio of two hardware performance counters, etc.). Selecting
the appropriate menu entry opens the corresponding dialog that guides the
user through the creation of a derived metric.

Aftermath allows arbitrary zooming and scrolling along the timeline through an
intuitive interface. Filters directly affect the information shown in the timeline
and the statistical views for the selected portion of the trace in order to provide
immediate visual feedback. Rendering was optimized carefully, such that no de-
lays interrupt the user’s work-flow. During development of Aftermath, we found
that complete traversal even of multi-gigabyte traces only represents a small
fraction of the rendering time. Displaying only information that is visible at the
selected zoom level reduced the overall delay sufficiently. For example, instead
of rendering all the state changes in the timeline, only states that represent a
relevant part of the interval defined by a pixel on the screen are shown. For a
set of communication events whose communication lines overlap, only one line is
drawn. The resulting rendering operations are carried out by the Cairo graphics
library [7]. For standard user interface components we have used GTK+ [8].

3.2 Trace format

Aftermath currently only supports its own, native trace format optimized for the
OpenStream run-time and OpenStream applications. In addition to generic trace
events of task-parallel applications the format also defines several event types
for data-flow analysis and OpenStream-specific data structures. As traces can
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contain hundreds of thousands of events, trace data is stored in a binary format
in order to reduce its size and to avoid long parsing delays when a trace is opened.
Further reduction of the file size could be achieved by trace compression.

Trace files are organized as streams of data structures, which can either con-
tain events (i.e., state changes, hardware performance counter values, communi-
cation events or discrete events, such as the creation of a task or beginning and
end of task execution), topological information about the machine (e.g., which
CPUs are associated to the system’s NUMA nodes), descriptions of hardware
performance counters or information about the location of OpenStream-specific
data-flow buffers. Structures can appear in any order, e.g. the trace might con-
tain events of different processors in an interleaved fashion, as long as total order
for events is preserved for each processor. This reduces overhead when the trace
data is collected and dumped to a file as no time-consuming sorting is necessary.

The format was also designed to contain only few redundancies. Information
not directly available in the trace file, but needed for rendering or generation
of basic statistics is derived and added to the internal representation when the
trace is loaded into main memory.

3.3 Symbol tables and annotations

Further information on tasks can be obtained by loading the symbol table of the
binary file of the executed application. Aftermath is able to extract the symbolic
names of functions using the standard command-line tools of the GNU/Linux
system. When a task is selected in the timeline, its symbol name is looked up
and shown in the detailed textual view. A click on the name starts an editor
with the corresponding source file and line.

Information that cannot be derived automatically can be provided by user-
defined annotations. A double-click on the timeline opens a dialog that lets
the user enter an arbitrary text and choose a color for the new annotation.
Annotations can be saved independently from the trace file and loaded for further
analysis at a later point in time. This is especially useful when analyzing complex
traces over a longer period of time.

4 Debugging application performance

The following cases, which we have encountered during development of bench-
marks for the OpenStream project, illustrate how Aftermath can be used for
performance debugging of task-parallel applications. The first example empha-
sizes a design problem of an implementation of the seidel benchmark, leading
to inefficient memory accesses. The two subsequent examples are performance
issues solved with Aftermath while implementing the kmeans application.

4.1 Seidel: detecting contention on memory controllers

The seidel benchmark simulates heat transfer on a surface by performing a 5-
point stencil operation on the elements of a 2-dimensional matrix. For parallel
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Fig. 2: High-latency memory accesses of seidel using a shared matrix: (a) All
of the 64 workers are in task execution state (dark blue) for almost the whole
execution (b) Heatmap mode indicating a relationship processor→ task duration
(c) Task duration distribution (d) Ratio of local accesses to the total number of
accesses for CPUs 0, 8, 16, and 56.

execution, a globally shared matrix is divided into equally-sized blocks that are
each processed by a different task.

The trace in Figure 2a shows that the execution starts with the sequential
generation of random data, during which processors are idle (light blue). It
is followed by a parallel phase carrying out the actual computations, where all
processors remain in task execution state until program termination (dark blue),
indicating that there is sufficient parallelism available.

Most tasks should have approximately the same duration because the amount
of work is the same, except for a few blocks at the borders of the matrix. However,
when selecting the parallel phase to display statistical data about task duration,
a performance anomaly becomes apparent. The task duration histogram shows
an abnormal distribution: several peaks appear denoting groups of tasks with
different execution durations as shown in Figure 2c.

The heatmap view of Figure 2b, in which tasks on the timeline are shown
with a different intensity of red according to their execution time, suggests that
the task duration directly depends on the processor executing the task. The
shortest tasks are executed by processors 0 to 8, which are located next to the
memory controller of NUMA node 0. Tasks from processors associated to nodes
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3, 5 and 7, which are at a distance of two hops from node 0, have the highest
duration. The shared matrix is thus located on node 0, which causes memory
accesses to be the bottleneck in this application.

The trace file also contains hardware performance counter data for the num-
ber of requests to local and remote memory controllers. On the test platform,
these are northbridge-wide counters [9] that aggregate accesses of 8 CPUs shar-
ing a memory controller. In the trace file, they have been associated to the CPUs
with the smallest identifiers, i.e. CPUs 0, 8, 16, 24, 32, 40, 48 and 56. Aftermath
is able to combine these two counters for remote and local accesses to a derived
metric representing the ratio between local accesses and the total number of ac-
cesses. Figure 2d shows the evolution of this metric extracted from the timeline
view, with a vertical plotting range clipped to [0, 1.1]. For CPU 0, the first mem-
ory controller, the value is close to 1 indicating a high fraction of local accesses.
For the other CPUs the value is close to 0. Thus, most of the memory accesses
are remote, targeting node 0, which finally explains the abnormal distribution
of task durations.

Interleaved allocation of the matrix data is one possible solution to this prob-
lem: distributing memory accesses across NUMA nodes reduces the contention
on a specific memory controller. For this example, it speeds up the execution
more than fourfold.

4.2 K-means clustering: block size

The kmeans application is a data-mining benchmark that partitions a set of n
multidimensional points into k clusters using the K-means clustering algorithm.
The block size passed as a parameter to the application must be chosen carefully
as it determines the number of tasks and the amount of work per task. For huge
block sizes, the available parallelism is low; tiny block sizes generate significant
task management overhead. Choosing the block size which yields minimal ex-
ecution time is not enough as the interaction between the application and the
run-time might not be optimal. We need to analyze the execution trace to better
understand how the application and run-time interact.

Figure 3 shows traces for three different values for the block size. With blocks
of 160,000 points, as shown in Figure 3a, iterations of the algorithm become
clearly distinguishable as alternating vertical “stripes” of tasks in either execu-
tion states (dark blue) or seeking states (light blue), where workers seek for new
tasks to execute. At the beginning of an iteration, all worker threads execute
tasks, but towards the end, most of the processors run out of work. At the origin
of this problem are small differences in timing, which let some faster workers
steal tasks from slower ones, hence creating an imbalance. On average, workers
are in task execution state for only 83% of the time and seeking in the remainder.

For a block size of 625 elements, shown in Figure 3b, more parallelism is avail-
able as shown by the low amount of time spent seeking. However, the overhead
of managing a large number of short-lived tasks reduces the overall proportion of
time spent executing and, therefore, reduces execution performance. This over-
head is apparent in the amount of time spent in states tcreate (task creation),
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(a) Sb = 160k (b) Sb = 625 (c) Sb = 10k

Fig. 3: Worker thread activity in kmeans for different values of the block size SB

tdec (synchronization counter management) and resdep (dependence resolving).
In addition, processors 0 to 16 create significantly more tasks than the others,
as can be seen at the top of the figure.

Figure 3c shows the timeline for a block size of 10,000 elements: a low relative
task management overhead and sufficient parallelism yield the best performance.

4.3 K-means clustering: branch mispredictions

After determining the appropriate granularity, Aftermath can be used for further
performance analysis. Figure 4a shows Aftermath’s timeline in heatmap mode
indicating the average task duration for each worker over time. To focus the
analysis on the computation, all auxiliary tasks have been filtered out. Although
all K-means computational tasks have similar workloads, their execution time
is not uniform as shown by the shades of red on the heatmap. Contrary to the
seidel example in Section 4.1, there is no clear and simple relationship between
task duration and topology: each processor executes slow and fast tasks and no
clear patterns are distinguishable.

Selecting a slow task from the heatmap and clicking on the task name in
the lower part of the main window, opens an editor with the task’s source code.
The innermost loop of the task contains a conditional update of the cluster
associated to a point. This results in frequently changing execution paths, which
could significantly impact performance if the branch predictor is unable to track
the pattern.

Aftermath can display hardware performance counters from a trace file, ei-
ther directly or after having calculated the (discrete) derivative for each sampling
interval. The latter option has been used to generate the branch misprediction
count of Figure 4b. As the hardware counters for each processor are monitored
right before and right after task execution, the graph interpolates with a con-
stant value corresponding to the average misprediction rate for each task. The
combination of the graph and the task duration heatmap immediately reveals a
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(a) Global view covering several iterations

Low mispre-
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(b) Zoom with branch misprediction rate

Fig. 4: Heatmap view showing the task duration of kmeans

correlation: slow tasks (darker shade of red) have a higher branch misprediction
rate than faster tasks (lighter shade).

It is possible to transform the condition, making the cluster update uncondi-
tional, and hoisting the check outside of the time-critical loop. The task duration
distribution becomes more uniform, which solves the performance anomaly.

5 Debugging run-time performance

OpenStream relies on a slab allocator, enabling the run-time to locate free data-
flow frames rapidly and to avoid expensive operating system calls at each al-
location. Evaluation of run-time performance requires joint execution with an
application. Hence, run-time debugging often adds up to joint run-time and
application debugging. In this section, we show how Aftermath allowed to iden-
tify inefficient allocations in the run-time due to a parametrization error that
becomes visible during interaction with the run-time of the seidel benchmark
presented in Section 4.1. In this benchmark, sequential execution is usually opti-
mized through loop tiling, which greatly improves cache behavior. The optimal
size of a tile is highly machine dependent. For our test platform a size of 216

elements, also used as the granularity of our parallel implementation, performed
best.

We discovered a performance anomaly in the slab allocator when experi-
menting with an alternative, data-flow implementation of the benchmark: in-
stead of using the original matrix in shared memory, tasks communicate single-
assignment data stored in frames of the slab allocator. Figure 5a shows the
timeline for this implementation. At a first glance, no performance problem is
apparent, only processor 0 creates more tasks than the other processors during
the initialization phase. However, a few task creation states rendered as small
white bars are visible. Compared to the average task execution time, task cre-
ation overhead in this benchmark should be negligible and no such state should
be visible in a global view.
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(a) Global view on the trace (b) Zooming reveals slow task creation

(c) Long task creation state (yellow) with short task execution state (blue)

Fig. 5: Long task creation periods in seidel due to inadequate parametrization
of the slab allocator

It shows that it is essential to zoom into the trace, to reveal the presence
at a finer scale of several longer task creation periods, as shown in Figure 5b.
Selecting a state causes Aftermath to update the view with detailed textual
information about the state and the associated task execution, which lets the user
quantify the information of a specific event. For the selected task creation state in
Figure 5c, Aftermath reports a duration of about 6 million cycles while the whole
task execution takes approximately 9.72 million cycles. A task creation with a
hit in the slab allocator usually finishes within a few thousand cycles. Long task
creations indicate that the allocation missed the slab cache and that a system
call was performed. For a benchmark with only a few different task types like
seidel, this should only happen at the beginning of the execution when the slab
cache needs to be filled. As task buffers are reused, subsequent allocations should
be fast. However, scrolling through the trace shows that expensive allocations
occur during almost the whole execution time.

Increasing the default maximum buffer size handled by the slab allocator of
512 KiB, which is slightly exceeded by the task buffers in this example, eliminates
the largest fraction of slab misses. Most of the expensive system calls and page
allocations can thereby be avoided.

6 Related Work

Visualization and analysis of trace files are common techniques, critical for per-
formance analysis and debugging in high performance computing, for which
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many tools have been developed. Without going into a complete survey of this
field, we have selected four representative tools, Paraprof, Paraver, Vampir, and
ViTE and we briefly explain why they do not fully meet our requirements for
performance analysis in the OpenStream project.

Paraver [10] is a tool for interactive trace analysis, providing powerful filter-
ing mechanisms for different graph types and independent views on trace data.
Earlier versions of OpenStream included support for trace files in Paraver’s na-
tive format. However, the tool’s resource model focuses on computation and does
not model memory-related resources and task communication patterns, which
are essential to the characterization of performance anomalies on many-core ar-
chitectures.

Paraprof [11], a profile visualization tool of TAU [12], is a retargetable frame-
work for writing trace analysis applications rather than a single tool for a specific
type of trace files or performance analysis. It provides a set of extensible compo-
nents for data sources, data management, analysis and visualization that can be
used as a basis for new tools. The overlap between functionality of existing com-
ponents of Paraprof and those required for data-flow analysis in the OpenStream
project is small, such that the implementation cost for an OpenStream-specific
tool using Paraprof would have been close to an implementation from scratch.

Vampir [13] is a well-known commercial tool that has been used in high
performance computing for almost two decades. It provides a rich user interface
for interactive exploration and analysis of huge traces and has a highly elaborated
filter interface. Multiple connected views with different granularity from cluster
level to function calls are supported. But unlike Aftermath, the tool is optimized
for analysis of massively parallel applications based on message passing. Neither
NUMA resources nor tasks are modeled explicitly, making fine grained task-
based and memory-related analysis impossible.

ViTE [14] is a freely available tool for trace-based analysis of parallel pro-
grams focusing on fast rendering. However, the tool lacks support for NUMA
topologies and analysis filters.

7 Conclusions

We presented Aftermath, a tool for trace visualization and interactive trace anal-
ysis. We illustrated Aftermath’s strengths on several examples based on genuine
situations encountered through the development of the OpenStream run-time
system and benchmarks. From these situations, we derived a list of require-
ments for performance debugging of task-parallel applications and run-times on
many-core systems. Aftermath fulfills all these requirements, and has proven in-
valuable when simultaneously tacking the sources of performance anomalies in
a task-parallel application and its supporting run-time execution environment.

Only a small number of the graphs and metrics covered in this analysis are
specific to OpenStream or to data-flow languages. Aftermath can thus already be
used for performance debugging of other task-parallel languages and run-times.
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The use of a copyleft license for Aftermath’s entire source code ensures that it
can be extended or modified for any free software project.

It would be interesting to insert Aftermath in a comprehensive optimiza-
tion framework. For example, one could complement performance analytics and
visualization with a predictive model of performance anomalies [15–17].

References

1. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. In: Proceedings of the fifth
ACM SIGPLAN symposium on Principles and practice of parallel programming.
PPOPP ’95, New York, NY, USA, ACM (1995) 207–216

2. Pop, A., Cohen, A.: Openstream: Expressiveness and data-flow compilation of
openmp streaming programs. ACM Trans. Archit. Code Optim. 9(4) (January
2013) 53:1–53:25
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